ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

Nanomatériaux

  initiation musicale

 

 

 

 

 

 

Nanomatériaux


© A. Gonin/CEA


Construire des nanomatériaux aux propriétés nouvelles pour l’énergie, les transports et d’autres applications de la vie quotidienne est un enjeu stratégique.

Publié le 1 juillet 2012

L’observation des matériaux au microscope fait apparaître leur composition, leur structure, granulaire ou fibreuse, et leurs défauts. Elle révèle, par exemple, que les alliages métalliques sont constitués d’agrégats de grains de taille micrométrique.

INFLUENCE DE LA STRUCTURE
La structure détermine les propriétés optiques, mécaniques, électriques, magnétiques, thermiques… des matériaux. En faisant coïncider l’échelle d’homogénéité des matériaux avec l’échelle d’action de phénomènes physiques, on peut modifier certaines de leurs caractéristiques. Ainsi, un verre millistructuré est transparent mais pas superhydrophobe, tandis qu’un verre microstructuré est opaque mais toujours pas superhydrophobe. Seul un verre nanostructuré est transparent et superhydrophobe.
Les nanomatériaux sont donc volontairement façonnés à cette échelle : ils sont constitués d’éléments nanométriques qui vont leur conférer la propriété recherchée. Ils peuvent se présenter sous forme de nanopoudre ou comprennent des nanoparticules intégrées dans une matrice ordinaire (on parle alors de matériaux composites).
En diminuant la taille des grains, on obtient des matériaux plus légers et ayant de meilleures propriétés mécaniques, par exemple plus résistants. Les matériaux obtenus sont plus malléables car les grains glissent plus facilement les uns par rapport aux autres.

Les polymères sont transparents : ce sont les nanocristaux dispersés dans le polymère qui sont fluorescents sous lampe UV. © Artechnique/CEA

Plus un objet est petit, plus sa surface externe est importante par rapport à son volume. Les objets nanométriques sont caractérisés par un nombre d’atomes en surface identique au nombre d’atomes en volume. Les phénomènes de surface jouent donc un rôle désormais prédominant. Le monde naturel l’illustre bien : ainsi, un insecte peut marcher sur l’eau mais, grossi 500 fois jusqu’à la taille d’un éléphant, il n’en serait plus capable.
De plus, ce qui se passe à l’interface entre chaque élément constitutif est aussi très important. Plus il y a d’éléments, plus la surface d’échange augmente. Celle des objets nanométriques est par conséquent immense. Il est ainsi possible de modifier les propriétés d’un matériau en le façonnant à cette échelle. Par exemple, le cuivre formé de nanocristaux est trois fois plus résistant mécaniquement qu’en microcristaux. Une poussière de nanotubes « en vrac » a une immense surface d’échange avec son environnement : plusieurs centaines de mètres carrés par gramme. Cela permet notamment d’augmenter l’efficacité des catalyseurs de l’industrie chimique ou des pots d’échappements pour le même volume de matière.
Certains matériaux réémettent de la lumière visible quand ils sont éclairés : c’est le phénomène de photoluminescence. Sous des rayons ultraviolets, la couleur émise par des nanocristaux de séléniure de cadmium change en fonction de leur dimension, passant du bleu pour des grains de 2 nm au vert pour 3 nm, puis au rouge pour 5 nm. Dotés de cette propriété, les nanocristaux de semi-conducteurs, souvent appelés quantum dots, peuvent être utilisés dans le marquage moléculaire ou encore comme marqueurs d’objets précieux et de produits commerciaux.
On peut ainsi utiliser la réactivité ou les propriétés de certaines nanoparticules pour obtenir des surfaces fonctionnalisées : vitres autonettoyantes, miroirs antibuée, revêtements antibactériens et/ou fongicides… Pour cela, il faut déposer une couche de ces nanoparticules à la surface d’un objet en matériau ordinaire avec des procédés comme le sol-gel ou le dépôt en phase vapeur.

La nature inspiratrice
Le gecko, petit animal qui ressemble à un lézard, a la propriété étonnante de courir au plafond ! En examinant de très près la surface de ses pattes, on a découvert qu’elle est constituée d’un tapis de fibres très serrées qui lui donne cette superadhérence. Des chercheurs sont en train d’en copier la structure pour reproduire cet effet de nano-velcro…
La feuille de lotus, quant à elle, présente une propriété étonnante : elle est superhydrophobe. L’étude nanométrique de sa surface met en évidence une nanostructure qui fait glisser les gouttes, et permet de comprendre comment et pourquoi, même plongée dans l’eau, elle paraît toujours sèche. L’intérêt de cette recherche est de pouvoir fabriquer des verres hydrophobes qui pourraient équiper les véhicules et la lunetterie.
Les objets nanométriques « naturels » sont depuis toujours présents dans notre environnement. Les grains d’argent des émulsions photographiques, la poudre à base d’encre de Chine, les colorants des verres (de certaines cathédrales par exemple) contiennent des nanoparticules. Mais les objets dérivant des nanotechnologies ne sont fabriqués que depuis quelques années. Aujourd’hui, plus de 350 produits grand public sont commercialisés pour lesquels le constructeur mentionne au moins un élément dérivé des nanotechnologies. Parmi eux, on compte des cosmétiques, des systèmes électroniques et des produits ménagers et sportifs.
Pour beaucoup d’applications, des nanoparticules aux propriétés déterminées sont incluses dans une matrice, créant ainsi un matériau composite fonctionnel. Tout, ou presque, est envisageable : béton ultraléger, résistant et auto-cicatrisant, film de polyéthylène antibactérien (en incluant des nanoparticules d’argent) et imperméable aux rayons UV (grâce à des nanoparticules de dioxyde de titane), crèmes solaires incorporant, elles aussi, des nanograins de dioxyde de titane pour l’absorption des UV dangereux pour la peau, céramiques nanorenforcées rendues bio­compatibles, matières plastiques à base de polymères rendues conductrices, ininflammables ou plus résistantes…

DES NANOS AU SERVICE DE L'ÉNERGIE
L’apport des nanomatériaux et des matériaux nanostructurés est stratégique dans le domaine de l’énergie nucléaire du futur, en particulier dans les projets liés aux réacteurs de « Génération IV ».

En effet, qu'il s'agisse des nouveaux alliages métalliques renforcés par une dispersion très fine d’oxyde (aciers ODS) ou de composites à matrices céramiques (CMC), les performances de ces matériaux reposent sur leur nanostructuration. Elles permettent par exemple aux premiers de renforcer leur résistance lors de leur utilisation en environnement sévère ; aux seconds de présenter une conductivité thermique élevée. Le développement pour le nucléaire de ces matériaux nanostructurés permettra la diffusion de connaissances, de savoir-faire technologique et d’innovation dans d’autres secteurs industriels.
Les nouvelles technologies de l’énergie intègrent aussi ces recherches.
Premier exemple : les cellules photovoltaïques. Les dispositifs actuels en silicium cristallin convertissent au maximum 16 à 18 % de la puissance du Soleil en énergie électrique, mais la fabrication des cellules est coûteuse, complexe, et exige de grandes précautions. Les nanotechnologistes élaborent des structures photosensibles flexibles, à partir de plastiques conducteurs, actuellement en phase de test.

L’apport des nanomatériaux et des matériaux nanostructurés est stratégique dans le domaine de l’énergie nucléaire du futur.

Pour les piles à combustible, le polymère des membranes a été rendu plus résistant mécaniquement, chimiquement et thermiquement. Les particules de platine, qui jouent le rôle de catalyseur, ont été remplacées par des nanoparticules, permettant ainsi d’économiser du métal précieux.
Le champ des possibles est immense. À l’évidence, des secteurs comme l’aéronautique et l’aérospatial, toujours à la recherche de matériaux légers et ultra-performants, seront de gros utilisateurs. Les moyens de transport terrestres, maritimes et aériens seront plus légers, emporteront plus de charge utile tout en consommant moins d’énergie et donc en polluant moins. L’industrie textile connaîtra aussi sans doute des bouleversements : de nombreux scientifiques travaillent déjà sur des tissus « intelligents ».

 

  DOCUMENT     cea         LIEN

 
 
 
initiation musicale toulon  

Les 4 interactions fondamentales

  initiation musicale


 

 

 

 

 

Les 4 interactions fondamentales

Publié le 28 juillet 2022

Quatre interactions fondamentales régissent l’Univers : l’interaction électromagnétique, l’interaction faible, l’interaction nucléaire forte et l’interaction gravitationnelle. Les interactions électromagnétiques forte et faible sont décrites par le modèle standard de la physique des particules, qui est en cohérence avec la physique quantique, tandis que l’interaction gravitationnelle est actuellement décrite par la théorie de la relativité générale. Quelles sont les propriétés de chacune de ces interactions ? Quel est leur impact sur notre quotidien ? Quels sont les enjeux de la recherche sur les interactions fondamentales ?

L’INTERACTION ÉLECTROMAGNÉTIQUE (FORCE ÉLECTROMAGNÉTIQUE)
L’interaction électromagnétique régit tous les phénomènes électriques et magnétiques. Elle peut être attractive ou répulsive : par exemple, deux pôles d’aimants de même signe (« nord » ou « sud ») vont se repousser alors que deux pôles d’aimants de signe opposé vont s’attirer.
Cette interaction est liée à l’existence de charges électriques et est notamment responsable de la cohésion des atomes en liant les électrons (charge électrique négative) attirés par le noyau de l’atome (charge électrique positive).
Le photon est la particule élémentaire associée à l’interaction électromagnétique. Il est de charge électrique nulle et sans masse, ce qui fait que cette interaction a une portée infinie.
J.C. Maxwell écrit, vers 1864, la théorie de l’électromagnétisme qui explique l’existence d’ondes électromagnétiques (ondes radio, infra-rouge, lumière, ultra-violet, rayons X et gamma). Leur importance n’est plus à démontrer. Dans la seconde moitié du XXe siècle, cette théorie a été reformulée grâce notamment aux travaux du physicien Feynman sous la forme de l’électrodynamique quantique pour y introduire les concepts quantiques de façon cohérente et qui décrit l’interaction comme un échange de photons.

L’INTERACTION FAIBLE (FORCE FAIBLE)
L’interaction faible est la seule qui agit sur toutes les particules, excepté sur les bosons. Responsable de la radioactivité Bêta, elle est donc à l’origine de la désintégration de certains noyaux radioactifs.
Le rayonnement Bêta est un rayonnement émis par certains noyaux radioactifs qui se désintègrent par l'interaction faible. Le rayonnement β+ (β-) est constitué de positons (électrons) et se manifeste lorsqu’un proton (neutron) se transforme en neutron (proton). Un neutrino (antineutrino) électronique est également émis. Ce rayonnement est peu pénétrant : un écran de quelques mètres d'air ou une simple feuille d'aluminium suffisent pour l’arrêter.
Les particules élémentaires associées à l’interaction faible sont le boson neutre (le Z0) et les deux bosons chargés (les W+ et W−). Ils ont tous une masse non nulle (plus de 80 fois plus massifs qu’un proton), ce qui fait que l’interaction faible agit à courte portée (portée subatomique de l’ordre de 10-17 m).

La datation au carbone 14 est possible grâce à l’interaction faible. Le carbone 14 est un isotope radioactif du carbone qui se transforme en azote 14 par désintégration Bêta moins. Sa période radioactive, temps au bout duquel la moitié de ses atomes s’est désintégrée, est de 5 730 ans. La technique du carbone 14 permet de dater des objets de quelques centaines d’années à 50 000 ans environ.

Le neutrino
Le neutrino, particule élémentaire du modèle standard, n’est sensible qu’à l’interaction faible. Le neutrino est un lepton du modèle standard de la physique pouvant prendre trois formes (ou saveurs) : le neutrino électronique, muonique et tauique. Les neutrinos n'ont pas de charge électrique et ont une masse très faible dont on connaît seulement une borne supérieure. Ils se transforment périodiquement les uns en les autres selon un processus appelé "oscillation des neutrinos". N'étant sensibles qu'à l'interaction faible, les neutrinos n'interagissent que très peu avec la matière si bien que pour absorber 50 % d'un flux de neutrinos, il faudrait lui opposer un mur de plomb d'une année-lumière d'épaisseur. >> En savoir plus sur les neutrinos

L’INTERACTION NUCLÉAIRE FORTE OU INTERACTION FORTE (FORCE FORTE)
L’interaction forte permet la cohésion du noyau de l’atome. Elle agit à courte portée au sein du proton et du neutron. Elle confine les quarks, particules élémentaires qui composent les protons et neutrons, en couples "quark−antiquark" (mésons), ou dans des triplets de quarks (un ou deux autres (anti) quarks) (baryons). Cette interaction se fait par l'échange de bosons appelés "gluons".
Le gluonest la particule élémentaire liée à l’interaction forte. La charge associée à cette interaction est la "charge de couleur". Lors de l'échange d'un gluon entre deux quarks, ils intervertissent leurs couleurs. L’interaction entre deux quarks est attractive et d’autant plus intense que ceux-ci sont distants l’un de l’autre, et est quasi nulle à très courte distance.
La réaction primordiale de fusion de deux protons en deutéron (un isotope naturel de l’hydrogène dont le noyau contient un proton et un neutron) est un processus dû à l’interaction faible dont le taux gouverne la lente combustion des étoiles. C’est ensuite l’interaction forte qui est à l’œuvre dans les chaînes de réactions nucléaires qui suivent et qui produisent d’autres noyaux.
Cette interaction est notamment responsable des réactions nucléaires qui ont lieu au sein du Soleil.

La réaction de fusion nucléaire

Les quarks portent une charge de couleur qui est à l’interaction forte ce que la charge électrique est pour la force électromagnétique. Un quark peut avoir trois couleurs, appelées par convention rouge, bleu et vert. Un antiquark a l’une des « anticouleurs » correspondantes : antirouge, antibleu et antivert.
Les quarks forment des particules composites « blanches », c’est-à-dire sans charge de couleur. Il y a deux manières de former ces hadrons : soit en combinant un quark et un antiquark dont la couleur et l’anticouleur s’annulent (par exemple rouge et antirouge) ; on parle alors de « méson ». Soit en associant trois quarks porteurs chacun d’une couleur différente ; de telles particules sont appelées « baryons » – par exemple le proton et le neutron.

L'INTERACTION GRAVITATIONNELLE (FORCE GRAVITATIONNELLE)
Dans la vision de la loi de la gravitation universelle de Newton, l’interaction gravitationnelle est celle qui agit entre des corps massifs. La force est attractive. La pesanteur et les mouvements des astres sont dus à la gravitation.

Dans le cadre de la relativité générale, la gravitation n’est pas une force mais une manifestation de la courbure de l’espace-temps. La gravitation ne fait pas partie du modèle standard, elle est décrite par la relativité générale. Elle se définit par la déformation de l’espace-temps.

La gravitation est la plus faible des quatre interactions fondamentales. Elle s'exerce à distance et de façon attractive entre les différentes masses. Sa portée est infinie.


La première théorie la décrivant efficacement est celle de Newton en 1687. Pesanteur, mouvements planétaires, structure des galaxies sont expliqués par la gravitation. En 1915, elle est remplacée par la théorie de la relativité générale d’Einstein qui sert de cadre à la description de l’Univers entier et où les masses déforment l’espace-temps au lieu d’y exercer des forces à distance.

A ce jour, on ne sait pas décrire l’interaction gravitationnelle par la mécanique quantique, et on ne lui connaît aucun boson médiateur. Au niveau théorique, la gravitation pose problème car on ne sait pas la décrire à l’aide du formalisme de la «  théorie quantique des champs  », utilisé avec succès pour les trois autres interactions. L’hypothétique graviton serait la particule médiatrice de la gravitation dans une description quantique de cette interaction.

PORTÉE DE L'INTERACTION ENTRE DEUX CORPS
La masse du boson vecteur (ou médiateur) va définir la portée de l’interaction. Imaginez deux particules en interaction comme deux personnes se lançant une balle, représentant le boson vecteur : plus la balle est légère, plus ils peuvent la lancer loin. Par analogie, plus le boson vecteur est léger, plus la portée de l’interaction est grande.
*         Force forte - Particules médiatrices (boson vecteurs) : gluons ; Domine dans :  noyau atomique
*         Force électromagnétique - Particules médiatrices (boson vecteurs) : photons - Domine dans : électrons entourant le noyau
*         Force faible - Particules médiatrices (bosons vecteurs) : Boson Z0, W+, W- - Domine dans : Désintégration radioactive bêta
*         Gravitation - Particules médiatrices (bosons vecteurs) : Graviton ? (pas encore observé) - Domine dans : Astres .

LA THEORIE DU TOUT : VERS L’UNIFICATION DES INTERACTIONS FONDAMENTALES ?
L’objectif des recherches est de trouver une théorie qui expliquerait simultanément les quatre interactions fondamentales.
L’unification des quatre interactions fondamentales fait partie des axes de recherche principaux de la physique des particules. Une première étape a été franchie il y a une trentaine d’années avec l’unification de l’interaction faible et de la force électromagnétique dans un même cadre : l’interaction électrofaible. Celle-ci se manifeste à haute énergie – environ 100 GeV. La suite logique de ce processus est d’y ajouter l’interaction forte. Mais, si convergence il y a, elle ne devrait se manifester qu’à des échelles d’énergie encore bien plus élevées (1015 ou 1016 GeV), totalement hors de portée des expériences actuelles. L’étape ultime, l’ajout de la gravité à ce formalisme, est encore plus éloignée et se heurte à des problèmes mathématiques non résolus pour le moment.
La théorie des cordes et la théorie de la gravitation quantique à boucles sont les deux cadres théoriques les plus étudiés aujourd’hui.
Les théories de dimensions supplémentaires, dont la théorie des cordes, ont été initialement proposées pour résoudre le problème de l’extrême faiblesse de la gravité. L’une des réponses serait que seule une petite fraction de la force gravitationnelle n’est perceptible, le reste agissant dans une ou plusieurs autres dimensions. Ces dimensions, imperceptibles, seraient courbées et non plates comme les quatre connues de l’espace et du temps.
Les cordes seraient des petits brins d’énergie en vibration qui seraient reliées dans plusieurs « branes » (des cordes qui se seraient étirées et transformées en grandes surfaces).  Les branes seraient comme des barrières entre plusieurs dimensions, jusqu’à 10, mais ces dimensions supplémentaires nous sont invisibles.
Toute la physique fondamentale serait unifiée, c’est-à-dire la mécanique quantique avec la relativité générale.
La gravité quantique à boucles a pour but de quantifier la gravitation. Elle a notamment pour conséquences que le temps et l’espace ne sont plus continus, mais deviennent eux-mêmes quantifiés (il existe des intervalles de temps et d’espace indivisibles). La gravité quantique à boucles cherche à combiner la relativité générale et la mécanique quantique directement, sans rien y ajouter.
Cependant, à ce jour, aucune théorie unique ne peut expliquer de façon cohérente toutes les interactions.

Notions clés
*         Interactions fondamentales et particules élémentaires : chacune des trois interactions fondamentales décrites par le modèle standard, à savoir l’interaction électromagnétique, l’interaction faible et l’interaction nucléaire forte - est associée à une ou plusieurs particule(s) élémentaire(s), les bosons. Ainsi, l’interaction forte est véhiculée par les gluons ; le photon transmet l’interaction électromagnétique tandis que les trois autres bosons sont responsables de l’interaction faible.
*         Spectre électromagnétique : le spectre du rayonnement électromagnétique s’étend des ondes radio aux rayons gamma en passant par les micro-ondes, l’infrarouge, la lumière visible, l’ultraviolet et les rayons X. Ce sont tous des rayonnements électromagnétiques qui ne différent que par la fréquence de l’onde. Pour en savoir plus, consulter L'essentiel sur les ondes électromagnétiques.
*         Le graviton est une particule hypothétique de la famille des bosons, médiateur de l'interaction gravitationnelle. Il s'agirait d'une particule de masse nulle, de charge électrique nulle et de spin égal à 2.

 

 DOCUMENT     cea         LIEN
 

 
 
 
initiation musicale toulon  

les supercalculateurs

  initiation musicale


 

 

 

 

 

les supercalculateurs

Publié le 7 mars 2022

Un supercalculateur est un très grand ordinateur, réunissant plusieurs dizaines de milliers de processeurs, et capable de réaliser un très grand nombre d’opérations de calcul ou de traitement de données simultanées. Les superordinateurs sont utilisés par les scientifiques et les industriels pour concevoir de nouveaux systèmes et objets (moteurs, avions, voitures), des matériaux ou des médicaments ; simuler des phénomènes physiques complexes (séismes, formation des étoiles, galaxies ou même Univers entier…) ; réaliser des prévisions (météorologie, climat) ; ou réaliser virtuellement des expériences difficilement réalisables en laboratoire.

COMMENT FONCTIONNE
UN SUPERCALCULATEUR ?
Dans les années 1930, les ordinateurs – ou calculateurs – effectuaient une opération par seconde. Aujourd’hui, les supercalculateurs les plus puissants réalisent des dizaines de millions de milliards d’opérations par seconde.
De tels progrès ont été possibles grâce à la miniaturisation des processeurs et des mémoires mais aussi grâce à une organisation particulière de ces calculateurs et de leur environnement à différentes échelles.


NOTIONS CLÉS
*         Un « supercalculateur » est une machine agrégeant de nombreuses unités informatiques pour réaliser un grand nombre d’opérations de calcul ou de traitement de données « en parallèle ».
*         Il permet de simuler un phénomène réel pour l’étudier, à partir de sa conversion en formules mathématiques, réunies en un algorithme complexe nécessitant des puissances de calcul haute performance, ou HPC.
*         Il permet aussi de traiter les énormes résultats de nombreux calculs ou issus de mesures ou d’expériences, afin de donner sens aux données pour des applications scientifiques, industrielles, commerciales, sociétales.
*         Il est utilisable par les chercheurs, dans l’industrie, par les pouvoirs publics.

UN FONCTIONNEMENT EN « GRAPPE »
Pour réaliser autant d’opérations simultanées, les supercalculateurs effectuent les calculs « en parallèle », c’est-à-dire en les répartissant sur différents processeurs. Ceux-ci sont organisés en « grappe » de « nœuds de calcul », connectés par un réseau ultrarapide. Les nœuds de calcul mettent en commun leurs mémoires pour former une mémoire « distribuée » de très grande taille, et sont reliés à des espaces de stockage de plus grande taille encore. L’architecture détaillée des nœuds de calcul est également devenue un élément déterminant pour optimiser leur fonctionnement.

Les performances d’un supercalculateur décrivent ses capacités à exécuter des calculs mais aussi à traiter de très grands volumes de données. A ce niveau, on parle de « calcul haute performance » (ou « HPC », pour High Performance Computing en anglais) et la vitesse de traitement des opérations s’exprime principalement en Flops (Floating Point Operations Per Second, opération de base pour du calcul numérique, soit addition ou multiplication décimale).


LES SUPERCALCULATEURS  :
DES CAPACITÉS DE STOCKAGE GIGANTESQUES

Physiquement, les supercalculateurs sont constitués de nombreuses armoires (baies), reliées entre elles par des kilomètres de câble réseau (interconnexion ultra-rapide des nœuds de calcul) et regroupées dans des centres de calcul. Un centre de calcul comprend aussi de gigantesques capacités de stockage local de données auxquelles les ordinateurs doivent pouvoir accéder rapidement (dizaines de « petaoctets », contrepartie des dizaines de « petaflops » de puissance de calcul).
Comme ces machines sont de plus en plus puissantes et denses, leur consommation électrique devient très importante et dégage énormément de chaleur – tant dans les processeurs que dans les mémoires et réseaux de communication. Il faut donc mettre en place un système de refroidissement efficace et lui-même le moins énergivore possible - par exemple par circulation d’eau dans les portes des armoires ou dans les nœuds de calcul - ainsi qu’une climatisation dans la salle machine. Bien optimisés, ces systèmes de refroidissement consomment une fraction minoritaire de la consommation électrique globale, l’essentiel de l’énergie apportée au centre de calcul peut alors servir directement aux calculs et traitements de données et les coûts de fonctionnement sont mieux maîtrisés

LES SUPERCALCULATEURS, DES OUTILS ESSENTIELS POUR LA MODÉLISATION ET L’ANALYSE DES DONNÉES AU PROFIT DE LA SCIENCE ET DE L’INDUSTRIE

Grâce aux progrès des supercalculateurs, la simulation numérique – calculs permettant de représenter un phénomène physique ou complexe sur un ordinateur – s’est généralisée à toutes les disciplines au point de devenir le « troisième pilier » de la méthode scientifique, aux côtés de la théorie et de l’expérimentation.
La simulation numérique permet de mener des « expériences virtuelles » qui remplacent ou complètent les expérimentations lorsque celles-ci sont dangereuses (accidents, crash tests), à des échelles de temps trop longues ou trop courtes  (climatologie, physique atomique), à des échelles de taille trop petites ou trop grandes (protéines, astrophysique) ou encore interdites (essais nucléaires)…
Depuis quelques années, le calcul intensif, producteur de masses de données de plus en plus importantes, devient également un maillon indispensable du traitement des « mégadonnées » d’autres origines (expériences, observations, réseaux de capteurs, Internet…). Les techniques et méthodes du calcul haute performance (HPC) se retrouvent ainsi au cœur de processus mêlant production et analyse de données, modélisation numérique, techniques statistiques et d’apprentissage, intelligence artificielle...
Véritable fer de lance de ces approches, le HPC est la déclinaison la plus avancée à un moment donné de traitements parallèles qui se retrouvent souvent employés ou diffusés largement, à plus petite échelle et à terme, dans tous les secteurs de l’informatique.

LES DIFFÉRENTES ÉTAPES
D’UNE SIMULATION NUMÉRIQUE
Prenons l’exemple d’un chercheur ou d’une équipe de recherche recourant au HPC. Les moyens de calcul sont fournis par des centres de calcul régionaux, nationaux ou encore internationaux. L’accès à ces ressources se fait souvent via des dossiers de demande préparés à l’avance, parfois soumis à des processus de sélection compétitifs.

L’activité complète de modélisation/simulation comporte plusieurs étapes :

*         Décrire la réalité : les phénomènes physiques sont souvent complexes. Pour les représenter, les physiciens prennent en compte de nombreuses lois physiques, par exemple celles qui régissent les relations entre la vitesse, la température et la pression dans un fluide.
*        
*         Modélisation : Les lois physiques sont traduites en équations mathématiques, faisant intervenir l’ensemble des paramètres pertinents.
*        
*         Résolution numérique et programmation : les équations mathématiques, trop complexes pour être calculées humainement, doivent être traitées par un ordinateur. Comme celui-ci ne peut les résoudre en tous points et de manière continue, les mathématiciens les scindent en plus petits intervalles. Les équations sont calculées pour chacun des points et des instants pertinents. L’enchaînement des calculs à réaliser s’appelle un algorithme. En général, en simulation numérique, il s’agit au final de nombreuses additions et multiplications traduisant l’évolution des quantités physiques. Pour que l’ordinateur puisse exécuter l’algorithme, celui-ci est converti en langage informatique par les informaticiens.
*        
*         Validation : les trois étapes précédentes produisent un logiciel de calcul dont il faut assurer la mise au point « physique » (on parle de validation) et pas uniquement « informatique » (ici on parle de vérification). Il s’agit de délimiter la justesse physique des résultats pour certains domaines dans lesquels on peut se fier au logiciel. La comparaison avec des expériences ou résultats déjà connus est un ingrédient de la validation. De plus en plus, on recherche aussi l’estimation des incertitudes ou des sensibilités des calculs vis-à-vis de leurs paramètres. A défaut de réduire totalement les erreurs ou incertitudes, leur encadrement est apprécié.
*        
*         Ces quatre étapes ne sont pas nécessairement reproduites à chaque étude. L’effort de mise au point d’un environnement de simulation (logiciel de calcul et tous les outils complémentaires tels que la visualisation des résultats) se fait en amont soit par une équipe de recherche ou un groupement d’équipes, parfois par des sociétés logicielles spécialisées, et il est amorti sur des durées parfois très longues – années voire décennies.
*        
*         5. Exécution de simulations : grâce aux moyens de plus en plus performants mis à leur disposition par les spécialistes concevant les supercalculateurs et les centres de calcul, les physiciens et ingénieurs lancent leurs simulations numériques. Puis les résultats sont conservés dans des espaces de stockage de grande capacité, conçus pour un accès performant et pérenne. Les utilisateurs peuvent en général visualiser leurs données sur leur poste de travail de façon interactive, parfois directement connectés au système de stockage du centre de calcul - les masses de données concernées par le post-traitement peuvent en effet excéder les capacités locales de recopie ou les capacités de débit du réseau entre site de calcul et laboratoire.


Les enjeux de la simulation numérique
La simulation numérique a pour objectifs :
*         De comprendre et faire progresser la science, dans tous les domaines ;
*         De concevoir : dans l’industrie, la simulation numérique permet de réduire le nombre de tests nécessaires au développement des produits, et donc le coût et la durée des étapes de recherche, développement, et conception. Ainsi, elle améliore la productivité, la compétitivité et la capacité d’innovation des entreprises dans tous les secteurs : aéronautique, cosmétique, bâtiment…
*         D’agir et décider : dans le domaine de la sécurité vis-à-vis des risques naturels ou industriels, de la santé, de l’environnement, de la prévision climatique..., la simulation numérique permet de répondre à des enjeux sociétaux.

 

 DOCUMENT     cea         LIEN
 

 
 
 
initiation musicale toulon  

ÉLECTRON

  initiation musicale

 

 

 

 

 

 

électron

(anglais electron, de electric et anion)

Consulter aussi dans le dictionnaire : électron
Cet article fait partie du dossier consacré à la matière.
Particule fondamentale portant l'unité naturelle de charge électrique et appartenant à la classe des leptons.

Structure de l'atome
Pour la physique, l'électron est l'objet théorique par excellence. C'est à son propos qu'ont été élaborées la plupart des théories importantes du xxe s., à commencer par la physique quantique. La physique atomique et moléculaire est essentiellement une physique des électrons. La chimie étudie la formation et la transformation des molécules, c'est-à-dire les transferts d'électrons d'un atome à un autre. La physique de l'état solide s'intéresse à la cohésion de la matière, assurée par les électrons. Plusieurs technologies ont spécifiquement l'électron pour matériau : électronique, informatique, applications médicales des faisceaux d'électrons, etc.
L'électron est l'un des plus importants constituants universels de la matière, dont toutes les propriétés macroscopiques sont, d'une façon ou d'une autre, liées à ses caractéristiques.
*         Fiche d'identité de l'électron
*         • masse : me = 9,1093897 × 10−31 kg ;
*         • charge électrique élémentaire : e = −1,60217733 × 10−19 C ;
*         • spin : ½ ;
*         • moment magnétique : 0,92740155 × 10−23 A·m2.
*         Son antiparticule est le positron : également appelé positon, il est de même masse que l’électron mais de charge opposée.
*
1. LA DÉCOUVERTE DE L'ÉLECTRON

L'étude de l'électrolyse apporta la première preuve expérimentale de l'hypothèse l’existence de grains matériels composant le « fluide électrique ». Diverses mesures effectuées vers les années 1880 montrèrent que la quantité d'électricité nécessaire pour dissocier une mole de n'importe quel corps est un multiple entier d'une même quantité. Le mot « électron » fut inventé en 1891 par l’Irlandais George Stoney pour désigner d'abord la quantité élémentaire d'électricité, puis la particule porteuse de cette quantité elle-même.
Pour en savoir plus, voir l'article électricité.

L'étude des décharges électriques dans des gaz raréfiés (à basse pression) imposa définitivement l'existence de l'électron. Celles-ci s'accompagnent de l'émission de « rayons » (les rayons cathodiques) qui rendent fluorescent le verre de l'ampoule. Jean Perrin en 1895 puis Joseph John Thomson en 1897 réussirent à isoler ces rayons et à montrer, d'abord, qu'ils étaient porteurs d'une charge négative, puis qu'ils étaient effectivement constitués de particules matérielles chargées, dont Thomson mesura la vitesse et le rapport ee /me de leur charge e à leur masse me. Quant à la détermination de la charge élémentaire e elle-même, ce fut l'œuvre des vingt années qui suivirent ; en 1910, Robert Millikan, au terme d'une expérience particulièrement délicate, établit la valeur de e avec une précision extraordinaire pour l'époque.

2. L’ÉLECTRON, CONSTITUANT FONDAMENTAL DE L’ATOME

L'idée d'une structure complexe de l'atome était tellement révolutionnaire au début du xxe s. que, pour l'imaginer, on fit appel à des « modèles classiques » de la physique. Une fois les caractères des ions positifs et de l'électron maîtrisés, la question de leur coexistence dans l'atome intrigua les physiciens.

2.1. LES PREMIÈRES TENTATIVES DE MODÉLISATION DE L'ATOME
Comme il n'était pas possible d'observer la structure atomique, il fallait concevoir un « modèle » qui permît de comprendre des phénomènes physiques que l'on pensait être corrélés à une telle structure. Pour Hantaro Nagaoka (1904), le critère principal, emprunté aux phénomènes chimiques, devait expliquer la formation des molécules à partir des atomes. Il imaginait l'atome comme une structure stable, semblable à la planète Saturne : il plaçait les électrons sur les anneaux et assimilait la planète au noyau. Tout en acceptant que le critère de comparaison devait être fourni par la chimie, J. J. Thomson pensait, au contraire, que les électrons circulaient à l'intérieur d'une sphère dont la surface était chargée positivement.

Ce modèle n'était plus viable dès qu'on prenait en compte un autre phénomène : la diffusion des particules α, émises par désintégration radioactive du polonium, à travers une feuille de platine, qu'Ernest Rutherford avait observée, laissait penser que la charge atomique positive était concentrée en un point car quelques particules α étaient fortement déviées. Pour que les résultats expérimentaux soient compatibles avec le modèle planétaire, il fallait considérer que la charge positive était concentrée au centre de l'atome. Vers 1911, ce modèle semble satisfaire et la chimie et la physique, même s'il est toujours impossible de montrer sa compatibilité avec l'ensemble des lois de cette dernière. L'atome ressemble au Système solaire : le noyau positif est au centre, et les électrons se déplacent sur des orbites à l'extérieur du noyau. Cependant, les électrons, en tournant, doivent émettre de l'énergie. Selon un tel modèle, encore grossier, ils s'approcheraient du noyau jusqu'à être détruits par combinaison des charges positive et négative, rendant l'atome fortement instable. Après une dizaine d'années de recherches, malgré cette objection de fond, des certitudes étaient partagées par les chercheurs : la concentration de la masse et de la charge positive dans le noyau, les électrons étant situés à l'extérieur du noyau ; autre certitude : la stabilité du modèle supposé, dit de Rutherford. Mais, pour comprendre la structure de l'atome, il fallait une clé supplémentaire.

2.2. STRUCTURE ATOMIQUE ET SPECTROSCOPIE

Spectres d'absorption et d'émission
Ce fut la grande intuition du Danois Niels Bohr que de corréler, en 1913, la structure des atomes avec leurs spectres. Un spectre est l'enregistrement de l'énergie absorbée ou émise par les atomes. Bien que différents pour chaque élément, les spectres ont un aspect semblable : des lignes espacées différemment entre elles, correspondant aux valeurs d'énergie absorbée ou émise. Cette structure régulière se prête bien à la traduction en formules du type « la différence d'énergie entre deux lignes est égale à un multiple entier d'une même quantité ». Or une nouvelle conception s'affirmait en physique depuis le début du siècle : l'énergie est aussi concevable comme constituée de petits grains, unités appelées au début « quanta de lumière » (Einstein, 1905), et depuis 1924 « photons ».
L'énergie des spectres correspondait-elle également à des multiples entiers du quantum ? Pouvait-on corréler l'absorption ou l'émission d'énergie avec le déplacement des électrons à l'intérieur des atomes ? Y parvenir pouvait permettre d'évaluer l'énergie correspondant à un électron dans un atome. Le modèle de l'atome calqué sur la structure planétaire paraissait donc se préciser : les électrons évoluent, de manière stable, sur des orbites qui sont les seules positions possibles. Un électron peut passer d'une orbite à une autre par absorption ou émission d'énergie, cette énergie étant toujours un multiple entier du quantum.
Pour calculer les différentes orbites possibles, on fit appel aux théorèmes de la mécanique. On imagina ainsi des orbites elliptiques ; celles-ci pouvaient être inclinées différemment par rapport à un axe. Il était dès lors possible de distinguer les électrons en leur attribuant des paramètres : les deux premiers correspondaient aux deux axes de l'ellipse et le troisième, à l'inclinaison par rapport à l'axe perpendiculaire à la première orbite et passant par le noyau. Cette construction avait été rendue possible par la confrontation entre données spectroscopiques et déductions théoriques à partir des modèles mécaniques. Cette méthodologie allait pourtant achopper bientôt sur une difficulté majeure.

2.3. LE MODÈLE QUANTIQUE DE L’ÉLECTRON

La diversité des éléments chimiques, dans le cadre du modèle des atomes planétaires, était expliquée par le fait que chaque élément est caractérisé par un nombre donné d'électrons (correspondant au numéro atomique), ceux-ci se disposant sur les orbites possibles du point de vue énergétique. Ainsi, chaque électron a d'abord été caractérisé par trois nombres entiers, dits nombres quantiques, obtenus par l'étude géométrique des orbites. On établissait aussi de cette manière l'interdépendance de ces nombres entre eux.
Le premier, le nombre quantique principal, généralement indiqué par n, est relié au niveau énergétique et indique l'axe principal de l'ellipse ; le deuxième, le nombre quantique azimutal, indiqué par l, peut assumer les valeurs 0 à (n − 1), et indique l'excentricité de l'orbite ; le troisième, le nombre quantique magnétique, indiqué par m, peut avoir les valeurs de −l à +l et représente l'inclinaison spatiale de l'orbite.
Or Wolfgang Pauli, à partir d'une analyse pointilleuse des données spectroscopiques, montra en 1924-1925 que la seule manière d'établir une correspondance entre l'ensemble des lignes observées pour un atome et les nombres quantiques était d'ajouter un quatrième nombre quantique (le spin s) en lui imposant uniquement deux valeurs : +1/2 ou −1/2. Certes, peu de temps après, George E. Uhlenbeck et Samuel A. Goudsmit réussirent à montrer, pour l'hydrogène, que ce nombre supplémentaire pouvait correspondre au moment cinétique propre de rotation de l'électron, appelé spin. Cette représentation mécanique constitue le dernier effort pour rester dans le cadre des anciens modèles. En effet, face à la multiplicité des modèles et en l'absence de critères physiques pour les départager, les physiciens furent convaincus que la structure des atomes allait devoir être repensée entièrement.

2.4. LE MODÈLE ONDULATOIRE DE L’ÉLECTRON
Deux voies furent suivies en même temps : des chercheurs, abandonnant l'image trop réaliste du modèle planétaire, raisonnèrent sur les seules grandeurs observables et mesurables, d'origine mécanique comme la position et la quantité de mouvement ; d'autres mirent l'accent sur la nature ondulatoire de l'électron.

2.4.1. L’ÉLECTRON SELON LOUIS DE BROGLIE

En 1924, Louis de Broglie montrait que les propriétés corpusculaires des électrons ont une contrepartie ondulatoire avec, comme relation fondamentale, la longueur d'onde λ = h /p, où h est la constante de Planck et p la quantité de mouvement de l'électron. On savait depuis les travaux de Hamilton, au milieu du xixe s., qu'un ensemble de corpuscules pouvait être représenté, mathématiquement, comme une onde. Cependant, s'agissait-il d'une pure possibilité mathématique ou d'une réelle capacité de l'électron à produire des phénomènes typiques de la théorie ondulatoire ? L'un de ceux-ci, le plus caractéristique même, correspond aux figures de diffraction. Ainsi, les expériences de Davisson et Germer, qui enregistrèrent en 1927 la figure de diffraction d'un faisceau d'électrons sur un mince cristal de zinc, furent considérées comme la preuve irréfutable de la double nature de l'électron : ondulatoire et corpusculaire.
L'électron présentait alors une analogie parfaite avec la lumière, qui peut être définie comme composée de photons, de spin nul, et comme une onde. Seule la valeur du spin – entier pour le photon et demi-entier pour l'électron – les départage ; ainsi, la réalité corpusculaire subatomique a comme grandeur typique le spin.
Cette conception de l'électron comme onde eut des prolongements techniques extrêmement importants. Par analogie avec le microscope optique, il a été possible de concevoir un microscope électronique (mettant en œuvre une source d'électrons, un réseau de diffraction, un système d'enregistrement – plaque photographique ou écran fluorescent – sur lequel est enregistré l'objet agrandi) dont la capacité d'agrandissement dépasse les 100 000 fois.

2.4.2. L’ÉLECTRON SELON ERWIN SCHRÖDINGER

Erwin Schrödinger décrivit l'électron comme une suite de fonctions ondulatoires. De plus, il obtenait les mêmes valeurs de l'énergie que celles que l'on calculait avec le modèle corpusculaire. Enfin, il était possible de passer de l'une à l'autre description car, du point de vue mathématique, elles sont équivalentes.
De ce fait, les physiciens se trouvaient confrontés à un problème supplémentaire : faut-il penser qu'à chaque corpuscule est étroitement associée une onde, ou que les descriptions ondulatoire et corpusculaire sont deux manières, complémentaires, de décrire une même réalité qui nous échappe ? Pour résumer, fallait-il accentuer l'analogie de ce problème avec ceux qui se posent dans d'autres domaines de la physique, comme l'optique ou l'acoustique, où cohabitent plusieurs points de vue, ou tenir ces résultats pour provisoires, en attendant une nouvelle théorie qui éliminerait le caractère de complémentarité associé à la nécessité de faire appel à deux visions ? Le débat est encore ouvert en physique, et pour l'instant il n'existe pas de théorie de remplacement.
La seule certitude des physiciens est que l'électron se situe à l'intérieur de l'atome, et qu'on ne peut indiquer que sa probabilité de présence dans ce confinement. Pour connaître la position de l'électron, il faut expérimenter ; or toute expérience perturbe le système de telle sorte qu'on ne sait plus où se situe l'électron après l'expérience. De plus, certaines grandeurs physiques mesurables sont liées entre elles de telle façon que, si l'on augmente la précision de la mesure de l'une, on réduit d'autant la précision de l'autre : il y a une indétermination fondamentale dans notre connaissance expérimentale de ces grandeurs. L'étude de l'électron aboutit donc à ces conclusions :
– toute description théorique revient à se donner des probabilités d'événements ;
– l'expérimentation perturbe tout système soumis à mesure ;
– si, au cours d'une même expérience, on veut évaluer en même temps des grandeurs liées, la précision de chaque mesure ne peut pas être arbitrairement élevée : plus on soigne l'un des paramètres, moins on obtient de précision sur l'autre ; la précision est donc toujours limitée.

3. L'ÉLECTRON DANS LES SOLIDES

Qu'apportait cette nouvelle vision à la connaissance des métaux ? D'énormes progrès avaient été réalisés dans la connaissance de leur structure. Les rayons X étant caractérisés par une faible longueur d'onde, la structure atomique d'un métal constitue un réseau naturel de diffraction pour cette « lumière », qui traverse la matière. Ainsi, en observant les réseaux de diffraction, on pouvait, par des calculs numériques extrêmement complexes, parvenir à déterminer la structure atomique. La cristallographie avait déjà habitué les savants à reconnaître dans les cristaux la présence de structures géométriques régulières ; cette connaissance fut étendue aux métaux, qui révèlent à l'échelle atomique une régularité non perceptible au niveau macroscopique. De plus, la diffraction des rayons X permettait d'apprécier la distance entre les lignes du réseau, et donc de mesurer la distance entre atomes. Ces valeurs, confrontées aux dimensions que l'on pouvait calculer à partir des modèles atomiques, montraient que la distance entre atomes d'un métal est telle qu'il faut supposer que les couches électroniques les plus externes sont en contact. La structure d'un métal est donc bien plus compacte qu'on ne l'imaginait. On conclut que les électrons de valence se déplacent dans un champ électrique intense, fort complexe, créé par les noyaux et les autres électrons atomiques. L'hypothèse des électrons libres relevait donc de la fiction. Mais comment oublier que, qualitativement au moins, un accord remarquable existait entre ce modèle et les données de l'expérience ?

3.1. L'APPROCHE CHIMIQUE

La clé de cette énigme va être fournie par la compréhension de la liaison chimique. Les couches électroniques externes étant très proches, au point de se toucher, on suppose qu'il se produit un phénomène analogue à la formation d'une molécule à partir des atomes. L'analogie est presque parfaite : comme les molécules, les atomes gardent leur individualité tout en formant un nouveau composé dont l'action est spécifique ; dans le métal, les atomes gardent aussi leur individualité, et leur assemblage manifeste des caractères physico-chimiques propres.

3.1.1. LES ÉLECTRONS DANS LA LIAISON IONIQUE
La cohésion moléculaire est considérée comme le résultat de l'attraction électrostatique entre ions de charge opposée. C'est le cas de la plupart des sels qui, en solution, se dissocient en ions. En général, ces molécules sont composées d'atomes de structure électronique fort dissemblable – on dit aussi qu'ils sont situés dans les cases extrêmes du tableau de Mendeleïev. L'un d'entre eux tend à se séparer de son ou de ses électrons externes pour atteindre une configuration électronique stable (huit électrons sur la couche externe), l'autre tend à s'annexer le ou les autres électrons, pour la même raison.

3.1.2. LES ÉLECTRONS DANS LA LIAISON COVALENTE
Pour atteindre une configuration électronique stable, les atomes adoptent une solution de compromis : ils mettent en commun les électrons externes. C'est, par exemple, le cas de la liaison entre deux atomes de carbone, courante dans les composés organiques. Il faut l'imaginer comme un nuage électronique entourant les deux noyaux, qui se placent à une distance telle qu'elle correspond à un minimum de l'énergie pour l'ensemble du système.

3.2. ÉLECTRONS ET NUAGE ÉLECTRONIQUE
Transposée au niveau des solides, l'image du nuage électronique implique le partage des électrons entre tous les atomes ; or cette image est fort semblable à l'hypothèse « ancienne » des électrons libres dans un métal, son réalisme naïf en moins. Pour la tester, il fallait faire appel aux méthodes de calcul de la mécanique quantique. Le point crucial est donc de résoudre ce problème du point de vue mathématique : il s'agit d'écrire une équation pour N corps en mouvement, N étant une valeur très grande correspondant aux électrons qui font partie de la liaison. Ce problème est soluble uniquement par des méthodes mathématiques approchées et il faut faire des hypothèses physiques « raisonnables » pour en simplifier la résolution.
L'hypothèse suivante s'est révélée féconde : les électrons gardant leur individualité, on va les considérer isolément. Il s'agit donc d'écrire l'équation du mouvement de l'un d'entre eux en présence d'un champ électrique issu des noyaux disposés selon les nœuds du réseau cristallin, champ auquel font écran les autres électrons. La nature symétrique de ce champ complexe permet d'introduire des simplifications ; il s'agit ensuite de l'évaluer raisonnablement. Si un composé ou un métal est stable, cela veut dire que son énergie est inférieure à la somme de l'énergie des atomes le composant. Transférée sur le plan de la description mathématique, cette idée revient à considérer que les fonctions atomiques qui décrivent l'électron seront sans doute changées, mais pas totalement ; elles peuvent donc constituer un point de départ raisonnable pour résoudre l'équation. Une fois trouvée une première solution, il faut modifier et le champ et les fonctions, puis répéter ce calcul tant que les petits changements apportés ne modifient pas les données importantes que sont les valeurs de l'énergie pour chaque électron dans le métal. Cette longue suite de calculs numériques est aujourd'hui possible grâce aux ordinateurs.

En général, on obtient des solutions du type suivant : les valeurs d'énergie permises au niveau atomique se regroupent dans des ensembles caractérisés par des énergies très proches, qui se confondent en une sorte de zone appelée bande. Ces bandes se distribuent sur une échelle des énergies croissantes ; elles peuvent se recouvrir en partie, ou être séparées par un large gap (écart) d'énergie. Partant de N fonctions atomiques, on obtient N niveaux énergétiques qui se regroupent en bandes. Comme dans la liaison chimique, l'occupation par les électrons des bandes les plus externes devra permettre de comprendre les phénomènes de conduction électrique et thermique. Les électrons s'« empilent » par deux et par fonction, selon le principe de Pauli. On peut alors schématiser ainsi les situations possible  : la bande externe est totalement remplie d'électrons, ou elle l'est partiellement ; la bande immédiatement supérieure, vide d'électrons, recouvre partiellement ou pas du tout la bande dernièrement occupée.

3.3. ÉLECTRONS ET PROPRIÉTÉS DES SOLIDES
Ce simple schéma des situations possibles du point de vue énergétique permet de rendre compte de ce qui paraissait inexplicable dans l'ancienne théorie de l'électron libre. Un électron peut être considéré comme libre d'occuper n'importe quel niveau d'énergie à l'intérieur d'une bande. Si deux bandes se superposent, il peut passer aisément de l'une à l'autre.
Théoriquement, ces mini-sauts demandent toujours une dépense énergétique, mais elle peut être considérée comme suffisamment faible pour que les sauts adviennent. Cette mobilité rend bien compte des propriétés conductrices des solides. Un isolant électrique est un solide où la dernière bande est complètement remplie et la bande vide, immédiatement supérieure, nettement séparée ; pour qu'il y ait mobilité, il faudrait fournir suffisamment d'énergie pour exciter les électrons sur la bande libre. Un bon conducteur présente la configuration inverse : si les deux dernières bandes se recouvrent, il suffit de peu d'énergie pour redistribuer les électrons. Un mauvais conducteur est un solide dont la distance entre la dernière bande remplie et la bande immédiatement supérieure n'est pas très grande : il suffit de peu d'énergie pour le rendre faiblement conducteur. Un tel modèle permet aussi d'expliquer pourquoi la chaleur spécifique des solides, dans les limites de validité de la loi de Dulong et Petit, est une constante. Dans le cas des mauvais conducteurs, la contribution électronique peut être considérée comme nulle ; dans les autres cas, la mobilité électronique est telle qu'elle ne change pas considérablement par l'augmentation de la température dans des limites définies. Dans les deux cas, la contribution des électrons à la chaleur spécifique est négligeable.

L'effet photoélectrique
Cette approche a en outre le mérite de relier aux modes de distribution électronique d'autres faits physiques, comme l'émission thermo-ionique, à l'origine de l'électronique classique, celle à tubes. On sait qu'en chauffant un métal il se produit une émission d'électrons. Cela signifie que ces électrons ont une énergie cinétique telle qu'ils dépassent la barrière représentée par la surface du métal. Ainsi, la surface devient du point de vue physique une discontinuité fondamentale dans le potentiel. Si cette analyse est bonne, on doit pouvoir expliquer, par analogie, l'effet photoélectrique, dans lequel l'énergie est fournie par le rayonnement incident. Ainsi que l'avait déjà observé Einstein, il faut un rayonnement d'une certaine longueur d'onde pour faire s’échapper des électrons d’un matériau. De ce fait, effets thermoélectrique et photoélectrique relèvent de la même explication.
L'électron décrit par les équations de la mécanique quantique perd son image de particule à laquelle sont associées une masse et une charge ; en revanche, il permet de mieux maîtriser et expliquer les phénomènes complexes propres aux solides.


PLAN
*        
    *         1. LA DÉCOUVERTE DE L'ÉLECTRON
    *         2. L’ÉLECTRON, CONSTITUANT FONDAMENTAL DE L’ATOME
        *         2.1. Les premières tentatives de modélisation de l'atome
        *         2.2. Structure atomique et spectroscopie
        *         2.3. Le modèle quantique de l’électron
        *         2.4. Le modèle ondulatoire de l’électron
            *         2.4.1. L’électron selon Louis de Broglie
            *         2.4.2. L’électron selon Erwin Schrödinger
    *         3. L'ÉLECTRON DANS LES SOLIDES
        *         3.1. L'approche chimique
            *         3.1.1. Les électrons dans la liaison ionique
            *         3.1.2. Les électrons dans la liaison covalente
        *         3.2. Électrons et nuage électronique
        *         3.3. Électrons et propriétés des solides
"Elles sont comme neuves !" : comment blanchir (vraiment) des toilettes jaunies
sponsored by: Cette semaine seulemen...
LIRE LA SUITE

Articles associés
conduction.
Passage de la chaleur ou de l'électricité d'un point à un...
Coulomb.
Charles de Coulomb. Physicien français...
courant électrique.
Déplacement de charges électriques dans un conducteur.
Einstein.
Albert Einstein. Physicien américain d'origine allemande...
électricité.
Manifestation d'une forme d'énergie associée à des charges électriques, au repos ou en mouvement.
électrolyse.
Décomposition chimique produite par un courant électrique.
élément.
Entité chimique fondamentale commune aux diverses variétés d'un même corps simple ainsi qu'aux combinaisons de ce corps simple avec d'autres corps...
émission électronique.
Projection d'électrons dans l'espace environnant par un corps porté à haute température.
ion.
Particule chargée électriquement et formée d'un atome ou d'un groupe...
liaison chimique.
Interaction entre atomes différents ou identiques qui conduit à la formation...
Voir plus


Chronologie
*         1821 A. M. Ampère émet l'hypothèse que les molécules des corps sont l'objet de courants de particules que l'aimantation peut diriger, se montrant ainsi un précurseur de la théorie électronique de la matière.
*         1891 L'Irlandais G. J. Stoney nomme « électron » le corpuscule élémentaire d'électricité, dont il a postulé l'existence dès 1874, et tente d'en calculer la charge.
*         1897 Le Britannique J. J. Thomson mesure le rapport de la charge à la masse de l'électron.
*         1911 Mesure de la charge de l'électron par l'Américain R. A. Millikan.
*         1916 Théorie de la liaison chimique (considérée comme un échange d'électrons) de l'Américain G. Lewis et de l'Allemand W. Kossel.
*         1923 L'Américain A. Compton observe la diffusion des rayons X par les électrons des atomes (effet Compton).
*         1925 Les Américains (d'origine néerlandaise) S. A. Goudsmit et G. Uhlenbeck définissent le spin de l'électron.
*         1927 Les Américains C. J. Davisson et L. Germer, d'une part, le Britannique G. P. Thomson, d'autre part, montrent expérimentalement le caractère ondulatoire des électrons.
*         1928 Les Américains G. Lewis et I. Langmuir expliquent la formation des molécules par mise en commun de doublets d'électrons.
*         1961 En Italie, premier anneau de collision pour l'étude des protons et des électrons.

 

  DOCUMENT   larousse.fr    LIEN
 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante
 
 
 
Google