ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

ATTOSECONDE

 

Paris, 28 novembre 2012

Le "phare" attoseconde : une méthode simple pour générer des impulsions ultra-brèves uniques
La dynamique des électrons au sein des atomes et des molécules est extrêmement rapide (ordre de grandeur : l'attoseconde, soit 10-18 s). Un moyen d'étudier ces phénomènes consiste à utiliser des impulsions de lumière ultra-brèves, uniques et bien caractérisées à cette échelle de temps. Grâce à la démonstration réalisée par les chercheurs du CEA-IRAMIS1 et du Laboratoire d'Optique Appliquée (CNRS/ENSTA-Paris Tech/École polytechnique), il est possible de disposer aujourd'hui d'une source de lumière particulièrement bien adaptée pour de telles recherches sur le comportement de la matière. Ces résultats sont publiés dans Nature Photonics, le 1er décembre 2012.
L'observation de la dynamique électronique extrêmement rapide au cœur des atomes ou des molécules nécessite l'utilisation d'impulsions dans le domaine attoseconde, permettant de réaliser des expériences de type « pompe-sonde », où une première impulsion vient exciter le système, et une seconde observer l'effet de cette excitation, après un délai variable.

La méthode actuelle et ses limites

De telles impulsions ne peuvent être générées par les technologies usuelles de l'optique laser. Le seul moyen démontré à ce jour  pour atteindre d'aussi courtes durées, utilise l'interaction d'impulsions laser femtosecondes (10-15 s) ultra-intenses avec la matière : en interagissant avec la cible, cette impulsion se déforme, ce qui permet d'obtenir une succession d'impulsions de quelques dizaines d'attosecondes chacune (fig.1). Ces impulsions temporellement très proches, sont difficilement exploitables pour des expérimentations, et depuis une dizaine d'années, différentes méthodes ont été proposées pour extraire une impulsion attoseconde unique.

L'innovation apportée par l'étude

Pour produire des impulsions attoseconde isolées, la nouvelle idée des scientifiques, plus simple et plus facilement exploitable, a été de disperser spatialement la succession d'impulsions, à la manière du faisceau de lumière d'un phare. L'émission de chaque impulsion attoseconde se produit ainsi dans une direction légèrement différente, permettant d'obtenir une série d'impulsions attoseconde bien distinctes par leur direction de propagation.
Loin de la cible solide, les impulsions attoseconde successives sont bien distinctes et leur espacement de plusieurs millimètres, permet de les isoler les unes des autres.
Le principe de cette nouvelle approche, proposé initialement par l'équipe de l'IRAMIS, a d'abord été validé théoriquement par des simulations numériques, réalisées avec les moyens de calcul du GENCI (Grand équipement national de calcul intensif). La démonstration expérimentale a ensuite été effectuée au Laboratoire d'Optique Appliquée (École polytechnique-CNRS-ENSTA-ParisTech) sur une chaîne laser délivrant des impulsions proches du cycle optique à très haute cadence, grâce à une très étroite collaboration entre les deux laboratoires.
L'effet observé ouvre de nouvelles perspectives pour la jeune science attoseconde, en plein développement depuis 10 ans. En permettant d'obtenir, à partir d'une seule impulsion laser, plusieurs impulsions attoseconde isolées, sous forme de faisceaux bien séparés angulairement et parfaitement synchrones, les « phares » attoseconde constituent des sources de lumière idéales pour de futures expériences pompe-sonde visant à étudier la dynamique électronique dans la matière.

DOCUMENT          CNRS           LIEN

 
 
 
initiation musicale toulon  

ILOTS DE GAZ FROID DANS NOTRE GALAXIE

 

Paris, 13 février 2012

Découverte d'îlots de gaz froid dans notre Galaxie
Grâce à l'instrument HFI de la mission Planck de l'ESA, une équipe internationale comprenant de nombreux chercheurs du CNRS, du CEA et d'universités françaises, vient de révéler que notre Galaxie contient des îlots de gaz froid jusque-là inconnus. Ce résultat sera présenté cette semaine lors d'une conférence internationale à Bologne (Italie) où des scientifiques du monde entier discuteront ensemble des résultats intermédiaires de la mission Planck.
Les nuages froids présents dans les galaxies, en particulier dans notre Voie Lactée, constituent des "réservoirs" à partir desquels se forment les étoiles. Ils se composent essentiellement de molécules d'hydrogène, et dans une moindre mesure de monoxyde de carbone.
Les molécules d'hydrogène sont cependant difficiles à détecter car elles émettent peu de rayonnement. Bien que beaucoup moins abondant, le monoxyde de carbone se forme dans des conditions similaires et émet, à l'inverse, facilement de la lumière. C'est pour cette raison que les astronomes l'utilisent comme traceur pour cartographier les nuages d'hydrogène. "Il se trouve que Planck est un excellent détecteur de monoxyde de carbone sur l'ensemble du ciel" indique Jonathan Aumont, chercheur à l'Institut d'astrophysique spatiale  (Université Paris-Sud/CNRS) à Orsay.
Une équipe internationale, dont de nombreux chercheurs du CNRS, du CEA et d'universités françaises, a donc souhaité utiliser l'instrument HFI de la mission Planck de l'ESA pour dresser la première carte complète de la distribution du monoxyde de carbone dans notre Galaxie. "Planck balaye systématiquement l'ensemble du ciel, ce qui nous a permis de détecter des concentrations de gaz moléculaire là où on ne les attendait pas" précise Jonathan Aumont. Un avantage d'autant plus précieux que les télescopes radio demandent beaucoup de temps et sont donc souvent focalisés sur les portions du ciel où l'on soupçonne déjà l'existence de ces nuages moléculaires.

Ce résultat sera présenté cette semaine lors d'une conférence internationale à Bologne (Italie), où des scientifiques du monde entier discutent ensemble des résultats intermédiaires de la mission, dont la découverte également d'un mystérieux "voile micro-ondes" dans la Voie Lactée. Pour Jan Tauber, responsable scientifique de Planck à l'ESA, "les résultats obtenus, à ce stade de la mission, sur le voile galactique et sur la distribution du monoxyde de carbone nous donnent un point de vue inédit sur certains processus physiques à l'œuvre dans notre Galaxie".

DOCUMENT          CNRS         LIEN

 
 
 
initiation musicale toulon  

MICROELECTRONIQUE

 

Paris, 12 janvier 2011

Microélectronique : un gaz d'électrons à la surface d'un isolant ouvre la voie du transistor multi-fonctions
Des chercheurs du CNRS et de l'Université Paris-Sud 11 (1) ont découvert comment créer une couche conductrice à la surface d'un matériau isolant et transparent très étudié pour la microélectronique du futur, le titanate de strontium (SrTiO3). Cette couche conductrice de deux nanomètres d'épaisseur est un gaz d'électrons métallique bidimensionnel qui fait partie du matériau. Facilement réalisable, elle ouvre des perspectives pour l'électronique à base d'oxydes de métaux de transition (la famille de SrTiO3), qui cherche à profiter de l'énorme variété des propriétés physiques de ces matériaux (supraconductivité, magnétisme, thermoélectricité, etc.) pour intégrer plusieurs fonctionnalités différentes dans un même dispositif microélectronique. Cette découverte inattendue, mise en évidence au synchrotron SOLEIL, est publiée dans la revue Nature du 13 janvier 2011.
Aujourd'hui, les composants microélectroniques sont fabriqués à base de couches de semi-conducteurs déposées sur un substrat de silicium. Afin de poursuivre l'accroissement périodique des performances des composés microélectroniques au-delà de 2020, des solutions technologiques alternatives sont à l'étude. Les chercheurs travaillent de plus en plus sur les oxydes de métaux de transition (2), qui présentent des propriétés physiques intéressantes comme la supraconductivité (3), la magnétorésistance (4), la thermoélectricité (5), la multi-ferroïcité (6), ou encore la capacité photo catalytique (7).

Parmi les oxydes des métaux de transition, le titanate de strontium (SrTiO3) est très étudié. C'est un isolant, mais il devient bon conducteur en le dopant (en créant quelques lacunes d'oxygène par exemple). Les interfaces entre le SrTiO3 et d'autres oxydes (LaTiO3 ou LaAlO3) sont conductrices, même si les deux matériaux sont isolants. En plus, elles présentent de la supraconductivité, de la magnétorésistance, ou de la thermoélectricité avec de très bons rendements à température ambiante. Seulement voilà : les interfaces entre oxydes sont très difficiles à réaliser.

Une découverte inattendue vient de faire sauter ce verrou technologique. Une équipe internationale pilotée par des scientifiques du CNRS et de l'Université Paris-Sud 11 vient de réaliser un gaz d'électrons métallique bidimensionnel à la surface de SrTiO3. Il s'agit d'une couche conductrice de deux nanomètres d'épaisseur environ, obtenue en cassant un morceau de titanate de strontium sous vide. Ce procédé, très simple, est peu coûteux. Les éléments qui constituent SrTiO3 sont disponibles en grande quantité dans les ressources naturelles et c'est un matériau non toxique, contrairement aux matériaux les plus utilisés aujourd'hui en microélectronique (les tellurures de bismuth). En outre, des gaz d'électrons métalliques bidimensionnels pourraient probablement être créés de façon similaire à la surface d'autres oxydes de métaux de transition.

La découverte d'une telle couche conductrice (sans avoir à rajouter une couche d'un autre matériau) est un grand pas en avant pour la microélectronique à base d'oxydes. Elle pourrait permettre de combiner les propriétés intrinsèques multifonctionnelles des oxydes de métaux de transition avec celles du métal bidimensionnel à sa surface. On peut songer, par exemple, au couplage d'un oxyde ferro-électrique avec le gaz d'électrons à sa surface, pour faire des mémoires non volatiles, ou à la fabrication de circuits transparents sur la surface des cellules solaires ou des écrans tactiles.

Les expériences de photoémission résolue en angle (ARPES) qui ont servi à mettre en évidence le gaz d'électron métallique bidimensionnel ont été réalisées d'une part au synchrotron SOLEIL (Saint-Aubin, France), et au Synchrotron Radiation Center (Université du Wisconsin, USA).

DOCUMENT            CNRS          LIEN

 
 
 
initiation musicale toulon  

UNE MEMBRANE DYNAMIQUE

 

Paris, 18 JUIN 2012

Une membrane dynamique capable de s'auto-réparer
Les membranes, matériaux poreux utilisés notamment pour filtrer des liquides, constituent un marché en pleine croissance. Pourtant, leur conception peut encore espérer d'importantes améliorations. S'inspirant des membranes cellulaires, des chercheurs de l'Institut européen des membranes (CNRS / ENSCM / Université Montpellier 2), en collaboration avec l'Institut de chimie radicalaire (CNRS / Aix-Marseille Université) ont développé la première membrane dynamique pour la filtration de l'eau. En fonction de la pression de l'eau, celle-ci peut ajuster de façon autonome la taille de ses pores. De plus, elle est capable de s'auto-réparer en cas de défaillance, ce qui augmente sa durée de vie et renforce la sécurité sanitaire du produit filtré. Ces recherches viennent d'être publiées dans la revue Angewandte Chemie.
Les membranes, qu'elles soient constituées de céramiques ou de polymères, font l'objet de très nombreuses applications, notamment dans l'industrie pharmaceutique et agroalimentaire. Servant aussi à la potabilisation et à la désalinisation de l'eau, leur marché connaît une croissance de 10% par an. Les membranes utilisées jusqu'à présent sont des structures figées : la taille des pores ne peut pas être ajustée. De plus, elles peuvent subir des déchirements qui ne sont pas détectés immédiatement,  ce qui pose des problèmes de sécurité sanitaire.

En s'inspirant des membranes cellulaires, les chercheurs ont mis au point un nouveau type de filtre : une membrane dynamique dont on peut faire varier la taille des pores en fonction de la pression de l'eau qui les traverse. Celle-ci est constituée d'une association de trois polymères de solubilité différente. Ceux-ci forment des micelles, des nanoparticules en constante interaction les unes avec les autres. Jusqu'à une certaine pression, lorsque la force de l'eau augmente, ces micelles ont tendance à s'aplatir, et donc, à réduire la taille des pores dont la membrane est parsemée. Ainsi, à une faible pression de l'ordre de 0,1 bar, la taille des pores est d'environ 5 nanomètres1, ce qui permet de filtrer des macromolécules ou des virus. En augmentant modérément la pression, on obtient des pores de l'ordre de 1 nanomètre qui barrent le passage aux sels, colorants et tensioactifs. Mais si l'on augmente la pression jusqu'à 5 bars, un changement drastique de la morphologie de la membrane se produit et les pores atteignent plus de 100 nanomètres de diamètre, ce qui permet de filtrer les bactéries ou les particules en suspension. Cette propriété unique permettra aux utilisateurs de ne recourir qu'à un seul type de membrane pour tous leurs besoins en filtration.

Mais ce n'est pas tout : ces filtres dynamiques de 1,3 micromètre d'épaisseur sont capables de s'auto-réparer. Si la membrane se fissure, l'équilibre physique qui lie les micelles entre elles est rompu. Celles-ci cherchent alors à rétablir cet équilibre et se réorganisent de façon à combler la fissure. Une perforation d'une taille 85 fois plus grande que l'épaisseur de la membrane peut ainsi être réparée sans intervention humaine et sans l'arrêt de l'opération de filtration. Cette capacité d'autoréparation permettra à la fois de prolonger la durée de vie des membranes et d'augmenter les garanties de sécurité sanitaire.

DOCUMENT        CNRS      LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante
 
 
 
Google