ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

Microbiote intestinal (flore intestinale)

  initiation musicale

       

 

 

 

 

 

Microbiote intestinal (flore intestinale)

Sous titre
Une piste sérieuse pour comprendre l’origine de nombreuses maladies
        

Notre tube digestif abrite pas moins de 1012 à 1014 micro-organismes, soit 2 à 10 fois plus que le nombre de cellules qui constituent notre corps. Cet ensemble de bactéries, virus, parasites et champignons non pathogènes constitue notre microbiote intestinal (ou flore intestinale).
Son rôle est de mieux en mieux connu et les chercheurs tentent aujourd’hui de comprendre les liens entre les déséquilibres du microbiote et certaines pathologies, en particulier les maladies auto-immunes et inflammatoires.
       

Dossier réalisé en collaboration avec Rémy Burcelin (unité Inserm 1048 /université de Toulouse Paul Sabatier, Institut des maladies métaboliques et cardiovasculaires, hôpital Rangueil, Toulouse), Laurence Zitvogel (unité Inserm 1015 /Université Paris Sud, "Immunologie des tumeurs et immunothérapie contre le cancer", Institut Gustave-Roussy, Villejuif), Guillaume Fond (unité Inserm 955 /Université Paris-Est Créteil Val-de-Marne, Fondation FondaMental, Institut Mondor de recherche biomédicale, hôpital Mondor, Créteil) et Harry Sokol (unité Inserm 1157 /CNRS/UPMC, "Micro-organismes, molécules bioactives et physiopathologie intestinale", Hôpital Saint-Antoine, Paris)

Comprendre le rôle du microbiote intestinal
Le microbiote est l'ensemble des micro-organismes - bactéries, virus, parasites, champignons non pathogènes, dits commensaux - qui vivent dans un environnement spécifique. Dans l'organisme, il existe différents microbiotes, au niveau de la peau, de la bouche, du vagin…  Le microbiote intestinal est le plus important d'entre eux, avec 1012 à 1014 micro-organismes : 2 à 10 fois plus que le nombre de cellules qui constituent notre corps, pour un poids de 2 kilos !

Le microbiote intestinal est principalement localisé dans l'intestin grêle et le côlon – l'acidité gastrique rendant la paroi de l'estomac quasi stérile. Il est réparti entre la lumière du tube digestif et le biofilm protecteur que forme le mucus intestinal sur sa paroi intérieure (l’épithélium intestinal).
La présence de micro-organismes dans l'intestin est connue depuis plus d'un siècle et on a vite présupposé qu'il existait une véritable symbiose entre notre organisme et cette flore. Mais, jusque récemment, les moyens techniques permettant d’étudier les détails de cette interaction étaient limités : seule une minorité d'espèces bactériennes du microbiote pouvait être cultivée in vitro. La mise au point des techniques de séquençage haut débit du matériel génétique ont donné un nouvel élan à cette recherche et il existe aujourd’hui un réel engouement de la recherche pour décrire la nature des interactions hôte-microbiote, celles des micro-organismes entre eux, et leur incidence

incidence
Nombre de cas nouveaux d'une maladie, apparus durant une période de temps donnée.
en matière de santé.
Ainsi, le rôle du microbiote intestinal est de mieux en mieux connu. On sait désormais qu'il joue un rôle dans les fonctions digestive, métabolique, immunitaire et neurologique. En conséquence, la dysbiose, c'est-à-dire l'altération qualitative et fonctionnelle de la flore intestinale, est une piste sérieuse pour comprendre l'origine de certaines maladies, notamment celles sous-tendues par des mécanismes auto-immuns ou inflammatoires. Cette thématique est devenue centrale pour la recherche biologique et médicale.

MétaHIT : Une flore d'une richesse inédite
L'étude MétaHIT, lancée en 2008 et coordonnée par l'Inra, a eu pour objectif d'identifier l’ensemble des génomes microbiens intestinaux (métagénome) par séquençage haut débit. Elle a aussi permis de dessiner une ébauche des interactions reliant métagénome et santé. Cette étude, première du genre, s'est fondée sur l'analyse d'échantillons de selles recueillis auprès de 124 personnes. Elle a identifié ainsi un total de 3,3 millions de gènes différents, appartenant à plus de 1 000 espèces différentes, dont une large majorité est d'origine bactérienne. Au plan individuel, elle a aussi montré que chaque individu portait en moyenne 540 000 gènes microbiens, soient environ 160 espèces, réparties en sept phyla (groupes de familles) différents. Enfin, MetaHIT a été la première étude à démontrer l'extrême richesse de la flore intestinale, en identifiant des centaines d'espèces bactériennes inconnues jusque-là.

A l'instar de l'empreinte digitale, le microbiote intestinal est propre à chaque individu : il est unique sur le plan qualitatif et quantitatif. Parmi les 160 espèces de bactéries que comporte en moyenne le microbiote d'un individu sain, une moitié est communément retrouvée d'un individu à l'autre. Il existerait d'ailleurs un socle commun de 15 à 20 espèces en charge des fonctions essentielles du microbiote. Bien que cela soit discuté, il semble que l'on puisse distinguer des groupes homogènes de population, selon la nature des espèces qui prédominent dans leur microbiote : on distingue trois groupes – ou entérotypes – principaux : bacteroides, prevotella et clostridiales.
Les virus bactériens (qui infectent les bactéries) sont aussi très nombreux au sein du microbiote. Ils peuvent modifier le patrimoine génétique des bactéries intestinales ou son expression. Ainsi, le virome constitue sans doute une autre pièce dans le puzzle de la physiopathologie propre à la flore intestinale, tout comme le microbiote fongique qui regroupe levures et champignons. Autant de sujets d’étude à explorer.

Un écosystème unique formé dès la naissance

Le microbiote d'un individu se constitue dès sa naissance, au contact de la flore vaginale après un accouchement par voie basse, ou au contact des micro-organismes de l'environnement pour ceux nés par césarienne. La colonisation bactérienne a lieu de façon progressive, dans un ordre bien précis : les premières bactéries intestinales ont besoin d’oxygène pour se multiplier (bactéries aérobies : entérocoques, staphylocoques…). En consommant l'oxygène présent dans l’intestin, elles favorisent ensuite l'implantation de bactéries qui ne prolifèrent justement qu’en absence de ce gaz (bactéries anaérobies : bactéroides, clostridium, bifidobacterium…).
Sous l'influence de la diversification alimentaire, de la génétique, du niveau d'hygiène, des traitements médicaux reçus et de l'environnement, la composition du microbiote intestinal va évoluer qualitativement et quantitativement pendant les premières années de vie. Ensuite, la composition qualitative et quantitative du microbiote reste assez stable. La fluctuation des hormones sexuelles – testostérone et estrogènes – pourra malgré tout avoir un impact sur sa composition. Des traitements médicaux, des modifications de l'hygiène de vie ou divers événements peuvent aussi modifier le microbiote, de façon plus ou moins durable. Par exemple, un traitement antibiotique réduit la qualité et la quantité du microbiote sur plusieurs jours à plusieurs semaines. Les espèces initiales sont capables de se rétablir en grande partie, mais des différences peuvent subsister. Des antibiothérapies répétées au cours de la vie pourraient ainsi induire une évolution progressive et définitive du microbiote, potentiellement délétère. Il semble cependant que nous ne soyons pas tous égaux face à ce risque : certains auraient un microbiote plus stable que d'autres, face à un même événement perturbateur.

Quand le microbiote rend service à l'organisme

Le microbiote intestinal assure son propre métabolisme en puisant dans nos aliments (notamment parmi les fibres alimentaires). Dans le même temps, ses micro-organismes jouent un rôle direct dans la digestion :
*         ils assurent la fermentation des substrats et des résidus alimentaires non digestibles
*         ils facilitent l'assimilation des nutrimentsnutrimentsSubstance alimentaire qui n’a pas besoin de subir de transformations digestives pour être assimilée par l’organisme.

grâce à un ensemble d'enzymes dont l'organisme n'est pas pourvu
*         ils assurent l'hydrolyse de l'amidon, de la cellulose, des polysaccharidespolysaccharidesGlucides constitués par un grand nombre de sucres simples

...
*         ils participent à la synthèse de certaines vitamines (vitamine K, B12, B8)
*         ils régulent plusieurs voies métaboliques : absorption des acides grasacides grasCatégorie de lipides assurant un rôle fondamental dans la structure des cellules et le stockage de l’énergie.

, du calcium, du magnésium...

Des animaux élevés sans microbiote (dits axéniques) ont ainsi des besoins énergétiques 20 à 30% fois supérieurs à ceux d'un animal normal.
Le microbiote agit en outre sur le fonctionnement de l’épithélium intestinal : des animaux axéniques ont une motricité du tube digestif ralentie. La différenciation des cellules qui composent cet épithélium est inachevée et le réseau sanguin qui l'irrigue est moins dense que chez l'animal normal. Or, ce système vasculaire a un rôle déterminant pour le métabolisme nutritionnel et hormonal, ainsi que pour l'arrimage de cellules immunitaires au sein de la paroi intestinale.

Le microbiote intestinal participe en effet pleinement au fonctionnement du système immunitaire intestinal : ce dernier est indispensable au rôle barrière de la paroi intestinale, soumise dès la naissance à un flot d'antigènes d'origine alimentaire ou microbienne. Ainsi, des bactéries comme Escherichia coli luttent directement contre la colonisation du tube digestif par des espèces pathogènes, par phénomène de compétition et par production de substance bactéricides (bactériocines). Parallèlement, dès les premières années de vie, le microbiote est nécessaire pour que l'immunité intestinale apprenne à distinguer espèces amies (commensales) et pathogènes. Des études montrent que le système immunitaire de souris axéniques est immature et incomplet par rapport à celui de souris élevées normalement : dans l'épithélium intestinal de ces souris, les plaques de Peyer, inducteurs de l'immunité au niveau intestinal, sont immatures et les lymphocytes, effecteurs des réactions immunitaires, sont en nombre réduit. La rate et les ganglions lymphatiques, qui sont des organes immunitaires importants pour l'immunité générale de l'organisme, présentent aussi des anomalies structurelles et fonctionnelles.

Microbiote et inflammation
L'inflammation est un élément important, étroitement corrélé à l'immunité : il existe à la fois un niveau physiologique d’inflammation indispensable, contrôlant notamment le microbiote, et des réactions inflammatoires importantes déclenchées en présence d'espèces pathogènes.  Ce dernier mécanisme repose notamment sur la présence de composants bactériens inflammatoires, comme les lipopolysaccharides (LPS) présents à la surface de certaines bactéries (Gram négatif). Ces antigènes provoquent une réaction immunitaire de la part des macrophages
macrophages
Cellule du système immunitaire chargée d’absorber et de digérer les corps étrangers
intestinaux qui produisent alors des médiateurs pro-inflammatoires (cytokines
cytokines
Substance synthétisée par certaines cellules du système immunitaire, agissant sur d'autres cellules immunitaires pour en réguler l'activité.
). Ceux-ci déclenchent une inflammation locale et augmentent la perméabilité de la paroi intestinale. Les LPS peuvent alors traverser cette dernière, passer dans la circulation sanguine, et provoquer un phénomène inflammatoire dans d'autres tissus cibles.

Les enjeux de la recherche
L’étude du microbiote intestinal est récemment devenue centrale pour la recherche en santé.

Maladies intestinales inflammatoires : un lien évident

Les maladies intestinales chroniques inflammatoires (MICI), comme la maladie de Crohn et la rectocolite hémorragique, sont liées à une activation inappropriée du système immunitaire dans l’intestin. Derrière leur survenue se cachent des facteurs génétiques et environnementaux (alimentation, âge...). En parallèle, l'amélioration des symptômes de patients sous traitement antibiotique, ou encore la disparition de lésions inflammatoires intestinales chez des personnes dont la paroi intestinale n'est plus au contact des fécès (dérivation fécale), ont aussi permis de suspecter le rôle du microbiote.
Un déséquilibre du microbiote en espèces bactériennes pro-inflammatoires et anti-inflammatoires, tout comme la prédominance de certaines familles de bactéries (Entérobactéries, Fusobactéries), ou la raréfaction d'autres espèces (Clostridia, Faecalibacterium) ont été décrits chez des personnes atteintes de MICI. Pour l'heure, il n'est pas possible de savoir s'il s'agit d'une cause ou d'une conséquence de ces maladies, ni de déterminer si la dysbiose à l'origine de la maladie est innée ou consécutive à un autre facteur environnemental (alimentation, médicament…). Une hypothèse séduisante est avancée : la dysbiose apparaîtrait sous l’influence de facteurs génétiques et environnementaux, mais jouerait elle-même un rôle dans l’initiation, le maintien ou la sévérité de l’inflammation, engendrant un cercle vicieux.

Par ailleurs, parmi les dizaines de gènes de prédisposition aux MICI aujourd'hui identifiés, certains jouent un rôle déterminant vis-à-vis du microbiote. La mutation du gène NOD2 est la plus fréquemment retrouvée chez les malades atteints par la maladie de Crohn : ce gène code pour un récepteur de l’immunité innée chargé de détecter un composant de la paroi bactérienne. Muté, il ne peut plus jouer ce rôle et favoriser le maintien de la barrière intestinale. D'autres mutations ont été rapportées, comme celle du gène ATG16L1, impliqué dans l'autophagie des cellules immunitaires en présence des bactéries, ou comme celle de MUC2, qui joue un rôle dans la synthèse du mucus intestinal.
Le microbiote constitue une cible thérapeutique de choix dans ces maladies inflammatoires. Jusqu'à présent, les premiers essais cliniques conduits avec des probiotiques

probiotiques
Microorganismes vivants qui, consommés en quantités adéquates, sont bénéfiques pour la santé de l'homme.
ou des prébiotiques
prébiotiques
Aliments spécifiques du microbiote, tels les polysaccharides, non utilisables par l'être humain.
n'ont pas été concluants. Toutefois, de nouvelles études sont attendues, fondées sur une sélection plus rationnelle des micro-organismes ou composés à mettre en œuvre. Parallèlement, certaines équipes essayent de créer des probiotiques génétiquement modifiés qui permettraient d'implanter le micro-organisme d'intérêt tout en la dotant de propriétés supplémentaires, comme la sécrétion de médiateurs immunomodulateurs

immunomodulateurs
Médicament qui stimule ou freine le système immunitaire.


Dysbiose et métabolisme
Le diabète et l'obésité ont une origine multifactorielle, à la fois génétique, nutritionnelle et environnementale. La part respective de chacun de ces facteurs est variable d'un individu à l'autre et les mécanismes moléculaires incriminant chacun d'entre eux restent à décrire précisément.

Cependant, on sait que ces maladies métaboliques sont caractérisées par une inflammation chronique dans laquelle le microbiote est impliqué.
Ainsi, une augmentation des graisses dans l'alimentation habituelle augmente la proportion des bactéries à Gram négatif. Par conséquent, elle augmente la présence de LPS inflammatoires au niveau local puis, après passage des LPS dans la circulation sanguine, dans le foie, les tissus adipeux, musculaires… L'inflammation à bas bruit qui s'installe dans ces tissus de façon chronique favorise l'insulinorésistance préalable au diabète et à l'obésité. Chez la souris axénique, l'implantation de microbiote provenant de souris obèses provoque d'ailleurs rapidement une prise de poids importante.
D'autres mécanismes impliquant le microbiote sont aussi probablement impliqués : outre le LPS, l'augmentation de la perméabilité épithéliale pourrait laisser passer des bactéries entières. Leur implantation durable au niveau des tissus adipeux, musculaires et hépatiques favoriserait le maintien in situ de l'inflammation. Parallèlement, certains métabolites

métabolites
Composé organique issu du métabolisme (sucres, acides aminés, acides gras...).
bactériens circulants auraient un rôle déterminant dans le mécanisme de régulation de la pression artérielle par le rein, ou dans le développement de la plaque d'athérome.
L'idée est aujourd'hui de développer des stratégies personnalisées, dans lesquels l'apport de prébiotiques, probiotiques ou symbiotiques est adapté aux spécificités individuelles du patient. A plus long terme, des traitements préventifs pourraient être développés afin de prévenir la survenue de ces maladies.

De la cancérogenèse à la thérapie anticancéreuse
Dans le domaine du cancer, le microbiote intervient à deux niveaux : tout d'abord celui de la cancérogenèse elle-même. Un certain nombre de données permet en effet d'affirmer que certaines tumeurs sont liées à la présence de micro-organismes précis, ou encore d'une dysbiose au niveau intestinal. Pour exemple, un déséquilibre du microbiote en faveur de certaines espèces (fusobacterium) augmenterait le risque de cancer colorectal ; la présence d'Helicobacter pylori favorise la survenue de cancer gastrique. Des données recueillies chez l'animal montrent encore une augmentation de l'incidence et de la sévérité de tumeurs mammaires chez des souris soumises à des régimes antibiotiques fréquents. Ces données sont corrélées à une étude épidémiologique dans laquelle les femmes jeunes ayant reçues en moyenne plus de deux antibiothérapies par an ont un risque de cancer du sein supérieur aux autres. Dans ce domaine toutefois, la difficulté est de discriminer le rôle du microbiote et celui d'autres facteurs de risque cancérogènes – tabac, alcool…- qui favorisent eux-mêmes une dysbiose.

Outre la cancérogenèse, l'efficacité des thérapies anticancéreuses serait aussi sous l'influence du microbiote. Il existerait une synergie d'action entre certains médicaments anticancéreux et la flore intestinale : on sait ainsi que l'efficacité du cyclophosphamide - couramment utilisé en oncologie - est influencée par le microbiote qui favorise la perméabilité intestinale et la migration de bactéries immunogènes

immunogènes
Qui induit une réaction immunitaire.
vers le système immunitaire tumoral. Elles provoqueraient une réponse immunitaire
réponse immunitaire
Mécanisme de défense de l’organisme.
en synergie avec le médicament antitumoral.
L'immunothérapie
immunothérapie
Traitement qui consiste à administrer des substances qui vont stimuler les défenses immunitaires de l’organisme, ou qui utilise des protéines produites par les cellules du système immunitaire (comme les immunoglobulines).
, utilisée depuis peu dans le traitement du mélanome

mélanome
Tumeur maligne de la peau.
et des cancers bronchiques et rénaux, bénéficierait aussi d'un coup de pouce de la part des bactéries de type Bacteroides. Elles influenceraient la capacité du système immunitaire à résister naturellement au mélanome. Par ailleurs, l'efficacité d'un traitement anti-mélanome par ipilimumab est elle-même corrélée à la présence de l'une ou l'autre de deux espèces de bactéries de la famille Bacteroides.
D'autres thérapeutiques (sels de platine, nivolimab) et d'autres cibles cancéreuses pourraient répondre aux mêmes mécanismes. Les perspectives thérapeutiques sont nombreuses : l'analyse du microbiote pourrait devenir un test systématique avant la mise en œuvre d'un traitement, prédictif de la réponse thérapeutique. Si nécessaire, des traitements spécifiques du microbiote y seraient adjoints : des probiotiques connus pour être capables de booster les lymphocytes intratumoraux pourraient être associées au traitement conventionnel anticancéreux.

La neuropsychiatrie sous l'influence de l'axe intestin-cerveau

Le système nerveux qui régit l'intestin contient à lui seul 200 millions de neurones. Sa fonction première est d'assurer la motricité intestinale ; cependant, 80% de ces cellules nerveuses sont afférentes, c'est-à-dire qu'elles véhiculent l'information dans le sens intestin-cerveau. C'est la raison pour laquelle on qualifie le système nerveux entérique de deuxième cerveau. Les chercheurs ont très tôt posé l'hypothèse qu'une modification du microbiote pouvait modifier l'information transmise au système nerveux central

système nerveux central
Composé du cerveau et de la moelle épinière.
. Plusieurs expériences cliniques ont été rapportées, comme celle d'une amélioration significative de symptômes autistiques par un traitement antibiotique. Si la corrélation semblait improbable il y a quelques années, elle est depuis considérée avec sérieux.
Le rôle du microbiote est évoqué dans de nombreuses maladies neuropsychiatriques : l'autisme, la schizophrénie, l'anxiété et la dépression ou les troubles bipolaires. Les arguments scientifiques sont encore insuffisants dans la plupart des cas, mais des éléments de preuve préliminaires ont été récemment publiés. Il viendrait s'ajouter aux nombreux facteurs – génétique, épigénétique, environnementaux, psychologiques… - qui jouent eux aussi un rôle déterminant dans le déclenchement de telles maladies.

Chez les personnes atteintes de schizophrénie ou de troubles bipolaires, l'équilibre entre les différentes cytokines pro-inflammatoires ou anti-inflammatoires dans le sang est perturbé, médié entre autre par le LPS et par d'autres marqueurs de translocation bactérienne.
Dans l'autisme, il a aussi été montré que des souris pouvaient développer un comportement d'anxiété et une automutilation si la composition de leur microbiote était significativement modifiée durant une période précise de leur croissance. Les chercheurs posent l'hypothèse qu'un phénomène similaire surviendrait chez les enfants et favoriserait le développement de l'autisme.
Dernièrement, des études ont suggéré que le microbiote pouvait avoir un rôle déterminant dans les maladies neurodégénératives : il serait impliqué dans l'inflammation cérébrale de la maladie d'Alzheimer. La gravité des symptômes parkinsoniens est aussi corrélée à la concentration d'une espèce particulière (Entérobactericeae). Tous ces différents phénomènes pourraient être médiés par des substances d'origine bactérienne neuroactive. Aussi, le développement des données de transcriptomique
transcriptomique
Étude des ARN produits lors de l’étape de transcription du génome, permettant de quantifier l’expression des gènes.
(sur l’expression des gènes) et de métabolomique (relatives aux métabolites) devrait en faciliter l'identification.
Les perspectives thérapeutiques sont nombreuses : des études préliminaires ont montré que l'administration de certains probiotiques permettait d'améliorer les symptômes d'anxiété ou de dépression chez des personnes malades comme chez des personnes saines ; d'autres ont montré que l'adaptation du régime alimentaire pouvait améliorer le déclin cognitif. Ces pistes restent pour l'heure extrêmement précoces et demandent à être confirmées.

Thérapeutique : Les six pistes thérapeutiques pour modifier la composition du microbiote ?
Les maladies déclenchées ou entretenues par une dysbiose pourraient être soignées par six moyens thérapeutiques différents :
*         une alimentation favorisant le développement des bactéries bénéfiques pour le système digestif.
*         un traitement antibiotique ciblant les espèces néfastes impliquées dans la physiopathologie de la maladie. Cette option ne peut cependant être envisagée comme un traitement chronique du fait de la pression de sélection qu'elle peut engendrer ; elle pourrait aussi induire de nouvelles pathologies.
*         l'apport par voie orale de probiotiques, des micro-organismes vivants, non pathogènes et démontrés comme bénéfiques pour la flore intestinale.
*         l'apport de prébiotiques, des composants alimentaires non digestibles, utiles à la croissance ou l'activité de certaines populations bactériennes intestinales.
*         les symbiotiques, qui combinent pré et probiotiques.
*         la transplantation fécale, qui consiste à administrer une suspension bactérienne préparée à partir des selles d’un individu sain par sonde nasogastrique ou par lavement. Elle permet d'implanter un microbiote normal chez un patient malade. Cette option thérapeutique est d'ores et déjà efficace et utilisée dans les infections intestinales sévères à Clostridium difficile.

 

DOCUMENT      inserm     LIEN
 

 
 
 
initiation musicale toulon  

Thérapie génique : des premiers résultats chez des enfants atteints de la maladie de Sanfilippo B

 

 

 

 

 

 

 

Thérapie génique : des premiers résultats chez des enfants atteints de la maladie de Sanfilippo B

COMMUNIQUÉ | 20 JUIL. 2017 - 14H45 | PAR INSERM (SALLE DE PRESSE)

BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION



Des travaux publiés le 13 juillet 2017 dans la revue Lancet Neurology montrent les résultats d’un essai de thérapie génique réalisé chez quatre enfants atteints de la maladie de Sanfilippo de type B (appelé aussi MPS IIIB). Aboutissement de deux décennies de partenariat et de soutien financier de l’AFM-Téléthon, et avec le soutien de l’association Vaincre les Maladies Lysosomales (VML), le Dr Jean-Michel Heard de l’Institut Pasteur et de l’Inserm, et les Professeurs Marc Tardieu et Michel Zérah, de l’Assistance Publique-Hôpitaux de Paris, AP-HP, et des universités Paris-Sud et Paris Descartes, ont constaté, après 30 mois de suivi, une bonne tolérance au traitement et un bénéfice neurocognitif pour les patients.
 
Le syndrome de Sanfilippo est une maladie génétique rare, qui touche environ un enfant sur 100 000. Elle affecte le développement du cerveau après la naissance et entraîne quelques années plus tard sa dégénérescence. Les premiers symptômes de la maladie – hyperactivité, déficit intellectuel progressif – se manifestent vers l’âge de deux ans. L’anomalie génétique empêche la production d’une enzyme nécessaire à la dégradation des mucopolysaccharides, des molécules qui aident les neurones à développer des connexions efficaces chez le jeune enfant lors des apprentissages, et dont l’accumulation est progressivement toxique pour les cellules du cerveau.  Cette maladie conduit, en 5 à 10 ans, à un état de polyhandicap et à un décès prématuré.
 
Le défi à relever pour espérer traiter la maladie de Sanfilippo consiste à concevoir une méthode permettant de fournir l’enzyme manquante dans le cerveau, le plus tôt possible après la naissance. Afin d’y arriver, l’essai thérapeutique débuté en octobre 2013, conduit par l’Institut Pasteur et réalisé à l’hôpital Bicêtre, AP-HP a consisté à injecter dans différentes zones du cerveau d’enfants atteints un vecteur de thérapie génique (AAV2/5) capable d’induire la production de l’enzyme manquante par les cellules cérébrales. L’objectif spécifique de l’essai de phase I/II était d’apprécier la tolérance au geste chirurgical et au candidat médicament ainsi apporté par la thérapie génique.
 
Dans cette étude, faisant suite à dix années de travaux préalables chez l’animal, les chercheurs ont pour la première fois mis en œuvre ce traitement chez quatre enfants âgés d’un an et demi à quatre ans (précisément 20, 26, 30 et 53 mois). Aucun effet secondaire notoire lié au traitement, qu’il soit clinique, radiologique ou biologique, n’a été constaté durant les 30 mois qui ont suivi le traitement, témoignant de la bonne tolérance.
 
Dès le 1er mois qui a suivi le traitement et durant les 30 mois de l’étude, les chercheurs ont détecté l’enzyme auparavant manquante dans le liquide cérébrospinal des quatre enfants traités. De plus, un suivi neurocognitif régulier très soigneux a montré un impact positif dans l’évolution du developpement intellectuel et comportemental chez les 4 enfants traités, particulièrement chez le plus jeune d’entre eux.
 
Les résultats encourageants de cet essai clinique de phase I/II indiquent qu’un traitement pourrait à l’avenir être proposé aux familles de patients atteints de la maladie de Sanfilippo. La prochaine étape pourrait consister en la réalisation d’un essai clinique de phase III impliquant la production industrielle de ce médicament.

 

 DOCUMENT      inserm     LIEN 

 
 
 
initiation musicale toulon  

La metformine améliore la motricité de patients atteints de dystrophie myotonique de Steinert, la maladie neuromusculaire la plus fréquente de l’adult

  initiation musicale

 

 

 

 

 

 

La metformine améliore la motricité de patients atteints de dystrophie myotonique de Steinert, la maladie neuromusculaire la plus fréquente de l’adulte

COMMUNIQUÉ | 30 AOÛT 2018 - 11H42 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


myotonique. Crédits: Inserm/IGBMC
Des chercheurs Inserm au sein d’I-Stem, l’Institut des cellules souches pour le traitement et l’étude des maladies monogéniques, annoncent des résultats encourageants de la metformine, un antidiabétique connu, pour le traitement symptomatique de la dystrophie myotonique de Steinert. En effet, un essai de phase II réalisé chez 40 malades, à l’hôpital Henri-Mondor AP-HP, montre que, après 48 semaines de traitement à la plus forte dose, les patients traités avec la metformine (contre placebo) gagnent en motricité et retrouvent une démarche plus stable. Les résultats de cet essai, financé à hauteur d’1,5 million d’euros par l’AFM-Téléthon, sont publiés ce jour dans la revue Brain.

La dystrophie myotonique de Steinert (DM1) est la plus fréquente des dystrophies musculaires de l’adulte. D’origine génétique, sa prévalence est estimée à 1/8.000, soit environ 7 à 8000 malades en France. Elle affecte les muscles, qui s’affaiblissent (dystrophie) et ont du mal à se relâcher après contraction (myotonie) ce qui désorganise les mouvements (marche instable par exemple). Elle atteint également d’autres organes (cœur et appareil respiratoire, appareil digestif, système endocrinien et système nerveux). A ce jour, cette dystrophie musculaire ne bénéficie d’aucun traitement curatif.

Les résultats publiés dans Brain sont le fruit d’une recherche menée depuis plusieurs années au sein d’I-Stem. En effet, grâce au développement de modèles cellulaires à partir de cellules souches pluripotentes, l’équipe de Cécile Martinat a, en 2011, identifié des mécanismes nouveaux à l’origine de la dystrophie myotonique de Steinert (Cell Stem Cell – 31 mars 2011). En 2015, Sandrine Baghdoyan, ingénieure de recherche à I-Stem, parvient à corriger certains défauts d’épissage dans des cellules souches embryonnaires et dans des myoblastes provenant de personnes atteintes de DM1 grâce à la metformine, une molécule anti-diabétique bien connue et identifiée comme efficace dans cette nouvelle indication grâce au criblage à haut-débit.(Mol.Therapy – 3 nov 2015).
Forts de ces résultats, I-Stem a lancé un essai clinique monocentrique de phase II, en double aveugle, randomisé contrôlé, chez 40 patients, en collaboration avec des équipes de l’Hôpital Henri Mondor AP-HP, celle du Dr Guillaume Bassez du centre de référence maladies neuromusculaires Ile-de-France, et celle du Centre d’Investigation Clinique coordonné par le Pr Philippe Le Corvoisier. Dans cette étude contre placebo, la metformine a été administrée trois fois par jour, par voie orale, avec une période d’augmentation de la dose sur 4 semaines (jusqu’à 3 g/jour), suivie de 48 semaines à la dose maximale.

L’évaluation de l’efficacité du traitement était notamment fondée sur le test de « 6 minutes de marche ». A la fin de l’étude, soit après un an de traitement, les patients ayant reçu la metformine gagnent une distance moyenne de marche de près de 33 mètres sur les performances initiales alors que le groupe ayant reçu le placebo reste stable (gain moyen de 3 mètres).

Cette motricité, analysée finement grâce à l’outil Locometryx développé par le laboratoire de physiologie et d’évaluation neuromusculaire de Jean-Yves Hogrel à l’Institut de Myologie au sein de l’hôpital de la Pitié-Salpêtrière AP-HP, est étroitement liée au fait que la metformine améliore la posture globale des patients qui, de fait, passent d’une marche instable « élargie », avant traitement, à une démarche droite, plus rapide et donc plus performante ».

Ces résultats démontrent, pour la première fois, l’efficacité d’un traitement pharmacologique sur la motricité dans la dystrophie myotonique de Steinert et, à notre connaissance, l’efficacité thérapeutique d’une molécule identifiée sur la base de la modélisation d’une pathologie avec des cellules souches pluripotentes.

 

 DOCUMENT      inserm     LIEN 

 
 
 
initiation musicale toulon  

L'IMPACT DES NEUROSCIENCES SUR LES THÉRAPIES

  initiation musicale

 

 

 

 

 

 

L'IMPACT DES NEUROSCIENCES SUR LES THÉRAPIES


Les neurosciences sont à l'origine de beaucoup d'espoirs et de fantasmes. Grâce à quelques exemples on peut démythifier ce qui est présenté dans les journaux, ce que tout le monde pense, les attentes des patients…Une vision plus réaliste sera présentée grâce à une connaissance du système nerveux, des ses troubles, de quelques modes exploratoires ainsi que des possibilités de traitements.

 

 VIDEO       CANAL  U         LIEN

Transcription de la 526 e conférence de l'Université de tous les savoirs donnée le 23 janvier 2004

Yves Agid « L'impact des neurosciences sur les thérapies »
L'Europe comporte 400 millions d'individus, dont 17 % ont plus de 65 ans, et représente la population la plus touchée par les maladies neurodégénératives, telles que les maladies de Parkinson ou d'Alzheimer. Il existe beaucoup d'autres pathologies neurologiques, telles que les accidents vasculaires cérébraux (AVC), l'épilepsie ou la sclérose en plaque. Ces maladies posent des problèmes de santé publique, mais aussi des problèmes socio-économiques. La maladie d'Alzheimer, qui concerne cinq millions de personnes en Europe, entraîne une dépendance totale trois à cinq ans après le début de la maladie et un coût d'environ 80 milliards d'euros par an. Au total, ces maladies neurologiques sont fréquentes, et coûtent plus de 300 milliards d'euros par an à la communauté européenne, ce qui peut paraître énorme, mais qui représente cependant moins que le coût des problèmes psychiatriques. Des dizaines de millions de personnes endurent des dépressions, des angoisses, 4 millions souffrent de psychoses (schizophrénie, délires,...). Les traumatisés de la route représentent quant à eux 1,7 million de nouveaux patients chaque année en Europe. Que peut faire la médecine pour soulager tous ces patients sur le plan neurologique ?

La première chose que le médecin apporte à son patient tient à la relation particulière qu'ils entretiennent ensemble. Tout bon médecin est un psychothérapeute qui s'ignore. Si la psychiatrie, la psychologie ou la neuropsychologie, sont des sciences très importantes dans la vie courante, elles le sont encore plus en médecine. Il y a d'ailleurs une analogie entre la psychothérapie et l'effet placebo (du latin je plairai). Cet effet existe dans tout médicament. Le placebo est une substance inerte administrée pour son effet psychologique. Il n'a, de manière remarquable, d'effet que lorsque le patient et le médecin ont une confiance parfaite dans son action. On dit que 40 % des médicaments prescrits dans en France sont d'ailleurs des placebo. Une expérience très classique illustre cet effet. Des étudiants en médecine reçoivent un comprimé parmi deux, l'un présenté comme sédatif et l'autre comme stimulant, mais ne contenant en réalité qu'une substance inactive. Plus des deux tiers des étudiants ayant reçu le « sédatif » ont déclaré avoir sommeil, et ceux ayant pris deux comprimés avaient plus envie de dormir que ceux qui n'en avaient pris qu'un. Un tiers de l'ensemble du groupe a signalé des effets secondaires, tels des maux de têtes, un picotement des extrémités, ou une démarche titubante. Trois étudiants seulement sur 56 n'ont ressenti aucun effet ! Cela prouve que l'acte médical, le fait de donner un médicament, n'a de sens que dans un contexte médecin/malade, ce que les médecins, parfois débordés, mais aussi les patients, ont tendance à oublier. Une relation médecin/patient de qualité est une chose absolument fondamentale.
Il y a encore une trentaine d'années, le cerveau était vu comme une boite noire, dans laquelle personne ne pouvait ni ne voulait regarder. Nous verrons que le cerveau est en effet une structure extraordinairement complexe. On commence cependant aujourd'hui à comprendre ce qui se passe dans un cerveau, normal ou anormal. Cette connaissance pourrait nous permettre d'agir de manière sélective sur les dysfonctionnements du cerveau malade.

Le cerveau humain pèse en moyenne 1350 g (celui de Lord Byron pesait 2,3 kg, et celui d'Anatole France, supposément le plus grand QI ayant jamais existé avec Voltaire, 900 g). Le cerveau est formé de deux hémisphères, chacun divisé par convention en quatre lobes, qui tirent leur nom des os du crâne qu'ils recouvrent : les lobes frontal, pariétal, temporal et occipital. Le cerveau humain est constitué de 100 milliards de cellules nerveuses. Chaque neurone présente des branches (des axones et des dendrites) qui ont chacune à leur extrémité des petites spicules sur laquelle sont établis en moyenne 10 000 contacts avec les cellules voisines. Le cerveau est donc un véritable réticulum. Chaque cellule nerveuse émet environ 1000 signaux par seconde. Par conséquent 1018 signaux sont véhiculés dans le cerveau chaque seconde, soit un milliard de milliard de signaux ! Vu de l'intérieur, le cerveau se présente comme une couche de cellules périphériques (le cortex cérébral) d'où des faisceaux de cellules nerveuses envoient des prolongements (projettent) vers les structures profondes du cerveau, que l'on appelle les noyaux gris centraux, ou les ganglions de la base. Différentes zones fonctionnelles ont été identifiées dans le cerveau : celle qui permet d'accomplir un acte moteur, la partie associative qui sous tend la fonction intellectuelle et le cortex dit limbique, qui contrôle les émotions. Chaque zone projette de manière spécifique vers la zone correspondante dans les structures profondes. Ces régions ne sont cependant pas cloisonnées : comment expliquer une fonction aussi extraordinaire que l'émotion déclenchée en voyant un tableau de Botticelli ?
Une cellule nerveuse peut mesurer un mètre de long : c'est le cas de cellules dont le noyau se trouvent dans la moelle, et l'extrémité de l'axone dans un orteil par exemple. Dans le cerveau, un neurone se trouvant dans une structure et projetant dans une autre émet aussi au cours de son trajet d'autres prolongements vers d'autres structures. Ce n'est pas un vecteur qui transmet une seule information à une cible unique : il reçoit des milliers d'afférences, et distribue son information électrique à une multitude d'endroits différents. L'arborescence des prolongements des neurones est d'une grande complexité, et les lois qui régissent l'établissement de ces réseaux ne sont pas encore parfaitement comprises. Les extrémités des prolongements des neurones contactent d'autres cellules nerveuses et présentent un métabolisme cellulaire extrêmement compliqué : des milliers ou dizaines de milliers de voies de transduction de signaux différentes, des récepteurs par milliers modulé par des neuromédiateurs. La vision que nous avons de ces mécanismes n'est encore que fragmentaire.
Il réside donc un hiatus entre la connaissance que nous avons du cerveau dans son ensemble et au niveau cellulaire alors que tout est relié physiologiquement. Si on veut imaginer des traitements futurs pour le malade, il faut comprendre comment il fonctionne, c'est à dire quelles sont les lois physiologiques qui vont permettre à l'information d'être émise et reçue. Comment des paroles, lorsqu'elles arrivent au cerveau, sont-elles intégrées, mémorisées, et provoquent-elles une réponse, que nous en ayons conscience ou non ? Les bases cellulaires de la mémoire, du langage et du subconscient commencent à être décortiquées et nous allons notamment voir des exemples illustrant notre compréhension de mécanismes contrôlant des phénomènes d'une part moteurs et d'autre part psychologiques.

Que se passe-t-il dans notre cerveau lorsque l'on bouge le pouce ? Il faut avoir l'idée de le faire, sélectionner le programme moteur (qui implique en fait tous les muscles de l'organisme car lorsque le bras est levé, le corps entier est mobilisé, ce qui est fait de manière subconsciente), le préparer à partir et exécuter le mouvement. C'est donc un problème sensori-moteur très cognitif. La neuro-imagerie, notamment l'IRM, permet de commencer à élucider ces étapes, en repérant les zones activées par une action. Les ganglions de la base s'allument ainsi lors de la préparation du mouvement. Lors de l'exécution, d'autres zones sont activées, et les ganglions de la base s'éteignent. Tout se passe très rapidement : 30 ms sont nécessaires pour qu'un signal aille de la moelle au pouce. Même si les échelles de temps sont beaucoup plus grandes que dans le domaine informatique (0,0003 ms pour la transmission d'un signal), l'homme parle et pense très vite.

Si un mouvement comme celui-ci est contrôlé, il peut aussi arriver que des pathologies entraînent des mouvements involontaires : les dyskinésies. Si tous les circuits qui permettent de réaliser ce mouvement sont connus, il doit être possible d'agir sur l'étape qui fonctionne mal. Dans certains cas les médicaments peuvent supprimer des symptômes, mais un médicament prescrit pour une petite défaillance à un endroit donné du cerveau diffuse dans tout le cerveau, ce qui provoque des effets secondaires. Un patient atteint de la maladie de Parkinson est gêné dans ses déplacements, il est très lent. Lorsqu'il est traité par de la dopamine, l'absence de mouvement fait place à la frénésie, l'hyperkinésie. Pour éviter ces complications, il est aussi possible d'aller directement à l'endroit défectueux. Pour ce faire, des électrodes stimulantes reliées à une pile, un pacemaker placé sous la clavicule, sont implantées dans une structure très profonde du cerveau, large de quelques millimètres (le noyau subthalamique). Le traitement de malades de Parkinson par cette technique pointue leur a permis de retrouver des mouvements normaux. Malheureusement cette technique ne permet de soulager que 5 % des cas de maladie de Parkinson, mais elle représente un énorme progrès scientifique : grâce à la connaissance parfaite de la physiopathologie, c'est-à-dire des bases neuronales des circuits altérés, et de ce pourquoi ils sont non fonctionnels, la vie de patients a été transformée.
La connaissance avance aussi dans le domaine du traitement par le cerveau des mécanismes émotionnels, notamment grâce à l'étude de patients présentant des pathologies atypiques. Prenons l'exemple d'un homme de 45 ans, opéré à deux reprises pour une grosse tumeur du cerveau. Quelques temps après l'opération, ce patient a commencé à collectionner les télévisions dans sa cave, sa chambre, sa salle de bain et jusque dans les tuyaux d'aération de son appartement. Cet homme était pourtant normal, malgré une légère apathie : son QI était tout à fait usuel et il vivait en famille. L'IRM a en fait montré une lésion très limitée des deux cotés du cortex limbique, dans une zone jouxtant l'ancienne place de la tumeur, expliquant ainsi ses troubles psychiques. Il existe des malades psychiatriques qui ont des lésions organiques du cerveau.

Ces cinq dernières années de nombreuses études non pathologiques ont été menées. Des patients sains sont placés dans des situations provoquant une émotion simple, et une IRM est réalisée pour observer les zones du cerveau qui s'activent. Lors d'une expérience, les témoins sont confrontés à deux photos d'une personne attrayante, la seule différence entre les deux images étant le fait que le sujet de l'image semble regarder le témoin ou non. Cela provoque donc une émotion élémentaire. Les régions du cerveau allumées dans le premier et le second cas sont soustraites. La seule zone activée uniquement dans le second cas est une petite structure se trouvant avec d'autres à la base du cerveau, l'ensemble contrôlant les émotions : le striatum ventral. Ces structures existent aussi chez les reptiles, et jouent un rôle dans les activités automatiques motrices, psychiques, et intellectuelles. De la même manière qu'il existe des structures nous permettant d'avoir une activité motrice inconsciente (on peut parler tout en conduisant), nous avons un inconscient psychique. Il est intéressant de noter que ces structures très anciennes s'activent pour une émotion aussi subtile.
De la même façon, des expériences ont été menées sur des singes avec une électrode implantée dans une unique cellule du cortex préfrontal. Ces singes apprennent à réaliser une action pour recevoir une récompense. L'enregistrement du neurone permet d'évaluer si ce neurone est actif ou non. Si la tâche est complexifiée et oblige le singe à effectuer un raisonnement abstrait, cette cellule nerveuse s'active de manière spécifique. Ce neurone encode donc des règles abstraites. La compréhension du cerveau dans ses grandes fonctions commence aussi à se faire à l'échelle cellulaire.
Une cartographie assez précise des circuits de cellules nerveuses activés et des fonctions aussi complexes que ce que l'on vient de décrire peut ainsi être réalisée. C'est très simplificateur dans la mesure où l'allumage de ces structures ne signifie pas forcément qu'elles sont un centre intégrateur.

Les malades présentant des désordres psychologiques dramatiques sont pour le moment traités avec des médicaments (anti-dépresseurs, anxiolytiques, neuroleptiques) mais cela représente une véritable camisole chimique. Chez des patients présentant un dysfonctionnement de l'attraction ou de la récompense (comme chez les toxicomanes, les pédophiles), on peut imaginer repérer les circuits de cellules participant à ces grandes fonctions intellectuelles et ici émotionnelles, affectives, pour trouver un médicament avec une action très sélective sur le circuit cérébral défectueux. Sans revenir au désastre de la psychochirurgie, on pourrait transposer ce qui a été fait sur les malades de Parkinson, c'est-à-dire l'utilisation d'une technique réversible, qui ne donne pas d'effet secondaire et qui est adaptable. Le développement d'une neurochirurgie du comportement, qui est actuellement du domaine de la recherche, peut se concevoir, dans des cas d'extrêmes sévérités et dans des conditions éthiques et juridiques réglementées. Il pourrait être possible par exemple de modifier de manière sélective des circuits de neurones pour soulager les patients.

Quelles disciplines sont mises en Suvre pour soulager les patients ? La neurophysiologie permet de comprendre le fonctionnement ou le dysfonctionnement des réseaux nerveux. Des préparations in vitro, des tranches de cerveau contenant quelques millions de neurones constituent des modèles simplificateurs. Des techniques très performantes sont mises en Suvre pour comprendre, par exemple, le phénomène épileptique et trouver des médicaments. Il faut cependant tenir compte du fait que les réseaux de neurones ne sont pas rigides comme un câblage informatique, mais peuvent se reconfigurer. Ce sont des assemblages plastiques, où les cellules repoussent et établissent de nouveaux contacts, contrairement à ce que l'on croyait dans le temps. Chaque cellule a de plus une mémoire personnelle. Il faut tirer profit de toutes ces propriétés pour essayer de soulager les malades avec des thérapeutiques adaptées pour chacune des cellules. D'autres disciplines telles que les neurosciences cognitives, la robotisation, l'informatique, la modélisation, la psychologie, l'anthropologie, la sociologie, la neuropsychologie et bien d'autres ont énormément à apporter au patient, et c'est un drame qu'existe un tel hiatus entre la faculté des lettres et celle des sciences. Des programmes de recherche en commun sont nécessaires. Les neurosciences cognitives tirent profit de l'avantage de l'homme par rapport aux modèles cellulaires ou animaux, du fait qu'il peut s'exprimer, ce qui procure des informations précieuses sur le vécu des individus et leur souffrance. La neuro-imagerie permet en outre de mesurer le volume du cerveau de certaines structures, leur fonction, d'étudier leur anatomie, voire leur chimie par spectro-IRM. La sémiologie (l'étude des signes cliniques de la maladie) est une science moins connue, mais apporte énormément, et permet de faire des diagnostics et de trouver des thérapeutiques originales.
Nous venons de montrer comment progresse notre compréhension du fonctionnement du cerveau à l'échelle des comportements, de son organisation et de son anatomie. Dans quelle mesure cela permet-il de trouver des médicaments ou des thérapies pour soulager les symptômes des malades, guérir, prévenir ou réparer ?
A l'heure actuelle, des vaccins, préviennent certaines maladies mais pas celles du cerveau. Les seuls outils disponibles pour guérir les maladies sont les antibiotiques. En outre, la chirurgie permet de réparer les fractures, et de retirer les tumeurs. Néanmoins, la médecine actuelle ne sait arrêter l'évolution ni du diabète, ni de l'arthérosclérose, ni d'aucune maladie neurodégénérative, même s'il est possible de soulager certains symptômes.

La neurodégenérescence est le résultat de deux phénomènes : une mort cellulaire d'une part sélective (des neurones dopaminergiques dans le cas de la maladie de Parkinson) et d'autre part lente, mais plus rapide que le viellissement normal d'une cellule. Une cellule peut mourir de deux manières : quand un tissu est brûlé, ou quand un abcès se forme, les cellules qui le composent meurent par nécrose, mais, dans les cas naturels, la cellule se suicide pour mourir, elle entre en apoptose. La plupart de nos neurones vivent toute notre vie, les cellules nerveuses ne meurent que très peu. Cependant leurs capacités diminuent. Dans la substance noire des patients atteints de Parkinson se trouvent trois types de neurones : des neurones sains vieillissants, quelques neurones en apoptose qui meurent en quelques jours et surtout des neurones malades, en état d'affaiblissement pathologique, qui meurent en quelques mois. En tant que pharmacologue, quel mécanisme analyser pour combattre pour arrêter l'évolution de la maladie ? Le vieillissement normal, l'apoptose, la mort pathologique ? Un grand nombre d'équipes travaillent sur l'apoptose, qui ne concerne pourtant qu'une petite partie de la mort cellulaire dans cette maladie.

La biologie moléculaire à notre disposition permet d'identifier et de comprendre le rôle des gènes qui codent les protéines, à la base de la vie cellulaire, et de leurs mutations. L'avancement actuel des connaissances montre cependant que le même gène peut être responsable de différentes maladies, et une même pathologie peut être causée par différents gènes. Il existe par exemple une maladie génétique dominante pour laquelle plus de quarante gènes ont été mis en cause. Il a été identifié une protéine (une ligase du protéasome) impliquée dans la nécessaire dégradation des protéines de la cellule qui est absente dans l'une des multiples formes de la maladie Parkinson. Néanmoins cette découverte ne permet pas de prévoir dans quel délai il sera possible de guérir la maladie. La compréhension d'une mutation et l'identification de la protéine anormale permettent d'attaquer la maladie sur un point précis mais chaque protéine a de multiples partenaires, ce qui rend la recherche encore plus difficile.
La biologie cellulaire envisage de modifier de manière spécifique le comportement de certaines cellules. Cependant les cellules malades ne représentent qu'une fraction de l'ensemble de l'organisme, et il est difficile de trouver des animaux mimant exactement les pathologies. Dans le cas de la maladie de Parkinson, les patients sont par exemple traités avec de la dopamine, ce qui permet de rétablir la transmission dopaminergique des cellules atteintes. D'autres médicaments comme les anxiolytiques ou les neuroleptiques modifient de manière connue le fonctionnement de certains neurones assez spécifiquement. Des thérapies utilisant des facteurs trophiques sont à l'étude. Ces substances produites naturellement au cours du développement du système nerveux favorisent la repousse neuronale.

La thérapie génique a pour objectif de travailler directement au niveau des gènes. L'idée est de remplacer le gène défectueux, in ou ex vivo. Dans le premier cas, l'objectif est de greffer le gène normal sur un vecteur particulier introduit dans le cerveau pour que l'échange de gènes se produise. Dans le second cas, il s'agit de modifier des cellules en culture et de les greffer par la suite. La thérapie cellulaire est envisagée de la même manière, dans l'optique de greffer de nouvelles cellules. L'ARN interférent a pour but d'agir sur l'intermédiaire entre le gène et la protéine
Ces concepts sont très intéressants sur le plan théorique, mais le cerveau est contrairement à beaucoup d'autres organes composé de tant de cellules différentes, dont on connaît mal les interactions, qu'il est chimérique de vouloir passer trop vite de la boite de Petri à l'homme.
La recherche scientifique doit concilier beaucoup d'impératifs à commencer par assurer une synergie entre des recherches cognitives et appliquées. La société a besoin, entre autre, de recherche finalisée, et il faut en même temps assurer la liberté de créer et la rentabilité industrielle. C'est le défi de l'interaction entre recherche fondamentale et recherche clinique. La recherche en neurosciences pose en outre des problèmes particuliers. Toutes ces études sont chères, et cela soulève des questions morales à l'échelle mondiale lorsque l'on sait que la tuberculose, le paludisme et le sida tuent par millions dans les pays en voie de développement. Dans les pays développés, les associations contre les maladies rares sont très puissantes, et trouvent beaucoup d'argent sur des sujets très spécifiques. Ainsi le budget de fonctionnement du Téléthon est supérieur à celui de l'INSERM ! Pour finir, la recherche sur le cerveau pose naturellement des problèmes éthiques considérables.

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ] Précédente - Suivante
 
 
 
Google