ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

Horloge biologique : à chaque organe, son rythme

  initiation musicale

 

 

 

 

 

 

Horloge biologique : à chaque organe, son rythme

COMMUNIQUÉ | 08 FÉVR. 2018 - 20H00 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


Une équipe de chercheurs de l’Inserm dirigée par Howard Cooper (Unité Inserm 1208 ” Institut cellule souche et cerveau”) en collaboration avec des collègues américains fournit pour la première fois une cartographie inédite de l’expression des gènes, organe par organe, et selon le moment de la journée ; un travail colossal commencé il y a dix ans et qui a nécessité deux ans d’analyse. Ces résultats publiés dans Science montrent combien il est important de tenir compte de l’horloge biologique pour administrer les médicaments au bon moment afin d’améliorer leur efficacité et d’en réduire les effets indésirables. Les chercheurs préparent désormais un atlas qui sera disponible pour l’ensemble de la communauté.

Environ deux tiers des gènes codant pour des protéines sont exprimés de façon cyclique au cours des 24 heures avec des pics en matinée et en début de soirée. Néanmoins, cette expression varie beaucoup d’un tissu à l’autre confirmant que, en plus de l’horloge centrale interne, chaque organe exprime sa propre horloge. Une équipe Inserm le prouve pour la première fois chez une espèce diurne et fournit une cartographie spatio-temporelle inédite de l’expression circadienne des gènes pour l’ensemble des organes. Ces travaux marquent une avancée majeure dans le domaine de la chronobiologie.
Jusque-là, les études destinées à explorer le rythme circadien dans les différents organes étaient menées principalement chez des animaux modèles comme la drosophile (travaux récompensés l’année dernière par le prix Nobel) et les espèces nocturnes, en particulier la souris. L’horloge circadienne étant principalement synchronisée par le cycle de lumière jour-nuit, il aurait été tentant d’inverser le cycle pour obtenir des données chez les animaux diurnes. Mais les rongeurs ne sont pas seulement en décalage de phase par rapport à l’homme, ils ont aussi un mode de vie très différent : un sommeil fragmenté de jour comme de nuit contre un sommeil plus consolidé pendant la nuit pour les diurnes ou encore une alimentation permanente pendant la phase d’éveil nocturne alors que les hommes prennent  des repas répartis de façon régulière. Autant de facteurs qui contribuent également à la synchronisation de l’horloge biologique. Il était donc temps de travailler chez des espèces plus proches de l’homme pour en savoir plus chez ce dernier.
Pour cela, les chercheurs ont analysés les ARNs de plus de 25 000 gènes de 64 organes et tissus, toutes les deux heures et pendant vingt-quatre heures, chez des primates non humains. Les organes principaux ont été passés au crible ainsi que différentes régions du cerveau. Au total, les chercheurs ont analysé 768 prélèvements. Un travail colossal commencé il y a dix ans et qui a nécessité deux ans d’analyse ! Pour chacun d’entre eux, ils ont recherché, quantifié et identifié les ARN présents dans les cellules. Ces ARN deviennent ensuite des protéines ou restent à l’état d’ARN avec des propriétés régulatrices sur d’autres molécules. C’est ce qu’on appelle le transcriptome.
 
80% des gènes réglés sur l’horloge biologique assurent les fonctions essentielles des cellules
Les auteurs ont constaté que 80% des gènes exprimés de façon cyclique, codent pour des protéines assurant des fonctions essentielles de la vie des cellules comme l’élimination des déchets, la réplication et la réparation de l’ADN, le métabolisme, etc. Mais, il existe une très grande diversité des transcriptomes, c’est-à-dire de l’ensemble des ARN, présents dans les cellules des différents échantillons au cours des 24 heures.

Le nombre de gènes exprimés de façon cyclique varie en nombre (environ 3000 dans la thyroïde ou le cortex préfrontal contre seulement 200 dans la moelle osseuse) et en nature : moins de 1% des gènes « rythmiques » dans un tissu le sont également dans les autres tissus.

Même les treize gènes connus de l’horloge biologique, que les auteurs s’attendaient à retrouver de façon cyclique dans tous les échantillons, n’y sont finalement pas tous présents, pas dans les mêmes quantités ou pas au même moment. Les seuls points communs entre ces 64 tissus sont finalement les pics bien définis d’expression des gènes au cours de la journée : en fin de matinée et en début de soirée. Le premier, le plus important, survient entre 6 et 8 heures après le réveil avec plus de 11.000 gènes exprimés à ce moment-là dans l’organisme. Et le second moins intense voit environ 5000 gènes en action dans les tissus. Puis, les cellules sont quasiment au repos au cours de la nuit, particulièrement lors de la première partie de la nuit.

Ces résultats ont surpris les auteurs par l’ampleur de la rythmicité des organes du primate non humain et des applications possibles. ” Deux tiers des gènes codants fortement rythmés, c’est beaucoup plus que ce à quoi nous nous attendions” clarifie Howard Cooper, directeur de recherche Inserm au sein de l’équipe “Chronobiologie et Désordres Affectifs” de l’Unité Inserm 1208. “Mais surtout, 82% d’entre eux codent des protéines ciblées par des médicaments ou sont des cibles thérapeutiques pour de futurs traitements. Cela prouve combien il est important de tenir compte de l’horloge biologique pour administrer les médicaments au bon moment de la journée afin d’améliorer l’efficacité et de réduire les effets indésirables. Quelques experts travaillent sur ces questions, notamment dans le domaine du cancer, mais il faut à mon avis aller beaucoup plus loin. C’est pourquoi nous préparons un véritable atlas, sous forme de base de données consultable, pour permettre aux scientifiques du monde entier de connaitre enfin le profil d’expression de chaque gène dans les différents organes au cours de 24 heures “, précise le chercheur.

 

  DOCUMENT        inserm        LIEN

 
 
 
initiation musicale toulon  

A l’origine de l’asymétrie, une protéine qui donne le tournis

  initiation musicale

    

 

 

 

 

 

A l’origine de l’asymétrie, une protéine qui donne le tournis

COMMUNIQUÉ | 23 NOV. 2018 - 20H00 | PAR INSERM (SALLE DE PRESSE)

BASES MOLÉCULAIRES ET STRUCTURALES DU VIVANT | BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION | GÉNÉTIQUE, GÉNOMIQUE ET BIO-INFORMATIQUE


Doigt de migration cellulaire précédé par une cellule leader. En bleu, les noyaux des cellules, en vert, l’actine, en rouge, la myosine. Le câble pluricellulaire d’acto-myosine est bien visible sur les bords du doigt. ©Inserm/Cochet-Escartin, Olivier, 2014

L’asymétrie joue un rôle majeur en biologie, à toutes les échelles : enroulement en spirale de l’ADN, cœur positionné à gauche, préférence pour la main gauche ou la droite… Une équipe de l’Institut de biologie Valrose (CNRS/Inserm/Université Côte d’Azur), en collaboration avec des collègues de l’université de Pennsylvanie, a montré qu’une unique protéine induit le mouvement en spirale d’une autre molécule puis, par effet domino, la torsion des cellules, des organes et du corps entier, jusqu’à déclencher un comportement latéralisé. Ces travaux sont publiés dans la revue Science le 23 novembre 2018.

Notre monde est fondamentalement asymétrique : enroulement de la double hélice d’ADN, division asymétrique des cellules souches, localisation du cœur humain à gauche… Mais comment émergent ces asymétries et sont-elles liées les unes aux autres ?
À l’Institut de biologie Valrose l’équipe du chercheur CNRS Stéphane Noselli comprenant aussi des chercheurs de l’Inserm et de l’Université Cote d’Azur étudie depuis plusieurs années l’asymétrie droite-gauche afin de résoudre ces énigmes. Ces biologistes avaient identifié le premier gène contrôlant cette asymétrie chez la mouche du vinaigre (drosophile), l’un des organismes modèles préférés des biologistes. Plus récemment, l’équipe a montré que ce gène joue le même rôle chez les vertébrés : la protéine qu’il produit, la myosine 1D[1], contrôle l’enroulement ou la rotation des organes dans le même sens.
Dans cette nouvelle étude, les chercheurs ont induit la production de myosine 1D dans des organes normalement symétriques de la drosophile, comme les trachées respiratoires. De façon spectaculaire, cela a suffi à induire une asymétrie à tous les niveaux : cellules déformées, trachées s’enroulant sur elles-mêmes, organisme entier torsadé, et comportement de nage hélicoïdale des larves de mouches. Chose remarquable, ces nouvelles asymétries se développent toujours dans le même sens.
Afin d’identifier l’origine de ces effets en cascade, des biochimistes de l’université de Pennsylvanie ont apporté leur concours : ils ont mis en présence, sur une lame de verre, la myosine 1D et un composant du « squelette » des cellules, l’actine. Ils ont alors pu constater que l’interaction des deux protéines entraine un mouvement en spirale de l’actine.

Outre son rôle dans l’asymétrie droite-gauche chez la drosophile et les vertébrés, la myosine 1D apparaît donc comme une protéine unique capable à elle seule d’induire l’asymétrie à toutes les échelles, d’abord au niveau moléculaire, puis, par effet domino, cellulaire, tissulaire et comportemental.
Ces résultats suggèrent un mécanisme possible d’apparition soudaine de nouveaux caractères morphologiques au cours de l’évolution, comme par exemple la torsion du corps des escargots. La myosine 1D aurait toutes les caractéristiques requises pour l’émergence de cette innovation, puisque son expression suffit à elle seule à induire la torsion à toutes les échelles.

[1] Les myosines sont une classe de protéines qui interagissent avec l’actine (constituant du squelette des cellules ou cytosquelette). La plus connue d’entre elles, la myosine musculaire, est responsable de la contraction musculaire.

POUR CITER CET ARTICLE :
COMMUNIQUÉ – SALLE DE PRESSE INSERM
A l’origine de l’asymétrie, une protéine qui donne le tournis
LIEN :
https://presse.inserm.fr/a-lorigine-de-lasymetrie-une-proteine-qui-donne-le-tournis/33070/

 

   DOCUMENT      inserm     LIEN 

 
 
 
initiation musicale toulon  

Un nouveau réseau cérébral relié à la douleur chronique dans la maladie de Parkinson

  initiation musicale

       

 

 

 

 

 

Un nouveau réseau cérébral relié à la douleur chronique dans la maladie de Parkinson

COMMUNIQUÉ | 31 AOÛT 2018 - 10H00 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


©Inserm/U746, 2011. Stuctures cérébrales profondes en 3D des hémisphères droit et gauche du cerveau. en vert et en rouge, les deux noyaux sous-thalamiques.
Des chercheurs de l’Inserm et de l’Université Grenoble Alpes ont révélé un nouveau réseau cérébral qui relie la douleur ressentie dans la maladie de Parkinson à une région spécifique du cerveau. Ces travaux, parus dans la revue eLife, révèlent qu’un sous-ensemble de neurones situé dans une partie du cerveau appelée noyau sous-thalamique serait une cible potentielle pour soulager la douleur dans la maladie de Parkinson, ainsi que dans d’autres maladies comme la démence, la sclérose latérale amyotrophique, la maladie de Huntington, et certaines formes de migraine.   
                                                
Les personnes atteintes de la maladie de Parkinson font souvent état de douleurs inexpliquées telles que des sensations de brûlure, de coup de poignard, de démangeaisons ou de fourmillements, qui ne sont pas directement liées aux autres symptômes de la maladie. Le traitement par stimulation cérébrale profonde du noyau sous-thalamique peut aider à réduire les symptômes liés aux mouvements dans la maladie de Parkinson. Des études récentes ont cependant montré que ce traitement atténue également la douleur, mais sans pouvoir à ce jour mettre en lumière les mécanismes impliqués. C’est sur cette question que se sont penchés des chercheurs de l’Inserm et de l’Université Grenoble Alpes au sein de l’Unité 1216 Grenoble Institut des neurosciences.

« Dans cette étude, nous avons cherché à déterminer si le noyau sous-thalamique intervient dans la traduction d’un stimulus nuisible (par exemple une lésion) en douleur, et si cette transmission de l’information est altérée dans la maladie de Parkinson, » explique Arnaud Pautrat, doctorant à l’université Grenoble-Alpes et chercheur principal de l’étude.

L’équipe a commencé par utiliser l’électrophysiologie pour mesurer le déclenchement de signaux électriques dans les cellules nerveuses du noyau sous-thalamique de rats recevant un choc dans la patte postérieure. Les cellules nerveuses apparaissaient temporairement activées par cette stimulation. Les chercheurs ont également découvert que les neurones se divisaient en trois catégories de réponses par rapport à la vitesse de déclenchement de base : une hausse, une baisse ou un maintien de la vitesse.
L’équipe a ensuite cherché à savoir si ces réponses provoquaient une modification de la fonction cérébrale. Les rats au noyau sous-thalamique endommagé ont mis beaucoup plus de temps pour montrer des signes d’inconfort que les rats sains. Lorsqu’ils ont élargi leur étude au modèle du rat dans la maladie de Parkinson, les chercheurs ont découvert que les cellules nerveuses du noyau sous-thalamique présentaient des vitesses de déclenchement plus élevées et que les réponses à la douleur étaient plus importantes et plus longues que chez les animaux sains. L’ensemble de ces résultats suggère que la douleur associée à la maladie de Parkinson serait due à un dysfonctionnement des voies du traitement de la douleur dans le noyau sous-thalamique.

Pour comprendre d’où proviennent les signaux de la douleur envoyés au noyau sous-thalamique, l’équipe s’est intéressée à deux structures cérébrales connues pour leur importance dans la transmission de signaux de lésions depuis la moelle épinière : le colliculus supérieur et le noyau parabrachial. En bloquant leur activité, les chercheurs ont observé que ces deux structures jouaient un rôle déterminant dans la transmission des informations de la douleur au noyau sous-thalamique, et qu’une voie de communication directe existe entre le noyau parabrachial et le noyau sous-thalamique. Dans le cas de la maladie de Parkinson, cette voie de communication pourrait donc intervenir dans les effets bénéfiques sur la douleur de la stimulation cérébrale. Ces nouvelles données pourraient aider à orienter la stimulation sur des parties spécifiques du cerveau pour augmenter l’efficacité de ses effets antalgiques.
« Les résultats que nous avons obtenus mettent en évidence que le noyau sous-thalamique est relié de manière fonctionnelle à un réseau de traitement de la douleur et que ces réponses sont affectées dans le syndrome parkinsonien, » conclut Véronique Coizet, chercheuse Inserm et directrice de l’étude. « Il faut maintenant effectuer d’autres expériences pour caractériser précisément les effets, qui ont été observés avec nos modèles expérimentaux, de la stimulation cérébrale profonde sur cette région du cerveau, afin de trouver les moyens d’optimiser cette stimulation en tant que traitement de la douleur induite par la maladie de Parkinson et par d’autres maladies neurologiques. »

POUR CITER CET ARTICLE :
COMMUNIQUÉ – SALLE DE PRESSE INSERM
Un nouveau réseau cérébral relié à la douleur chronique dans la maladie de Parkinson
LIEN :
https://presse.inserm.fr/un-nouveau-reseau-cerebral-relie-a-la-douleur-chronique-dans-la-maladie-de-parkinson/32316/

 

      DOCUMENT      inserm     LIEN

 
 
 
initiation musicale toulon  

Nos choix alimentaires prédits par l’anatomie de notre cerveau

  initiation musicale

       

 

 

 

 

 

Nos choix alimentaires prédits par l’anatomie de notre cerveau

COMMUNIQUÉ | 07 JUIN 2018 - 12H09 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE | PHYSIOPATHOLOGIE, MÉTABOLISME, NUTRITION

Plutôt gâteau ou légumes ? S’il est parfois difficile de manger sainement, une étude conduite par une équipe de chercheurs Inserm, CNRS et Sorbonne Université réunie autour de Liane Schmidt et de Hilke Plassmann au sein de l’Institut du Cerveau et de la Moelle épinière (ICM) a établi un lien entre l’anatomie de certaines régions de notre cerveau et la capacité de contrôle lors de choix alimentaires. Ces résultats sont publiés dans la revue The Journal of Neuroscience le 4 Juin 2018.

Manger sainement n’est pas chose aisée pour un grand nombre de personnes. La capacité à maintenir une alimentation équilibrée et à faire des choix nutritionnels sains varie grandement entre les individus.
D’un point de vue cognitif, faire un choix implique deux mécanismes principaux : le premier consiste à attribuer une valeur à chacune des options. Dans le cas des choix alimentaires, le goût de l’aliment et sa qualité nutritive peuvent par exemple déterminer sa valeur. Le deuxième mécanisme pour notre cerveau consiste à analyser la valeur donnée à chaque option pour choisir la plus adéquate, ici l’aliment auquel on aura attribué la valeur la plus importante.
Comment se traduisent ces prises de décisions dans le cerveau ? Pour répondre à ces questions, Liane Schmidt, chercheuse Inserm, Hilke Plassmann et leurs collaborateurs Anita Tusche du California Institute of Technology (USA), Cendri Hutcherson de l’Université de Toronto (Canada) et Todd Hare de l’Université de Zurich (Suisse) ont réuni les données d’imagerie cérébrale issues de quatre études portant sur la prise de décision alimentaire.

Dans trois de ces études, les participants ont effectué la même tâche qui consistait à évaluer leur appétence pour un aliment particulier selon trois critères: leur préférence naturelle, le goût de l’aliment et son bénéfice pour la santé. Les participants pouvaient ainsi baser leur choix uniquement sur le goût ou se concentrer sur l’intérêt nutritionnel de l’aliment.

Dans la quatrième étude, les participants devaient utiliser la méthode de leur choix (intérêt de faire des économies, de manger des produits bio, ou bien de faire un régime) pour réduire leur envie de produits goûteux mais sans intérêt nutritif. Dans cette dernière étude «Il s’agit d’une stratégie de contrôle plus flexible ne se focalisant pas spécifiquement sur les attributs du goût ou de la santé mais sur tous les moyens permettant de se distancier d’un aliment ou de résister à une envie.» précise Liane Schmidt, première auteure de l’étude et chercheuse Inserm.

Les chercheurs ont étudié les variations de la quantité de matière grise du cerveau des participants grâce aux données d’imagerie des trois premières études.
Ils ont ainsi mis en évidence une corrélation entre les choix alimentaires et la quantité de matière grise au niveau de deux régions du lobe frontal : la région dorso-latérale préfontale (dlPFC) – qui régit la régularisation des décisions – et la région ventro-médiale préfontale (vmPFC), en charge de l’attribution des valeurs. Ils ont observé que les personnes qui avaient plus de matière grise dans ces deux régions avaient davantage d’appétence pour les aliments qu’ils considéraient comme sains.

L’équipe de recherche a ensuite cherché à prédire les choix alimentaires des participants à la quatrième étude en se basant sur la quantité de matière grise détectable dans les deux régions identifiées précédemment. « L’idée ici était de voir si les corrélations établies dans un contexte où les stratégies de contrôle sont très claires – se concentrer sur le goût ou la santé- se généralisent à une situation où les stratégies de contrôle  sont plus vagues. » poursuit Hilke Plassmann.

Les chercheurs confirment ces résultats et établissent ainsi pour la première fois que des différences dans la neuro-anatomie des régions dlPFC et vmPFC jouent un rôle dans les prises de décisions alimentaires individuelles. Ces résultats ouvrent des perspectives pour, à terme, le traitement de troubles alimentaires associés à une perturbation du contrôle alimentaire, comme la boulimie ou l’anorexie.

 

  DOCUMENT   inserm.fr    LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ] Précédente - Suivante
 
 
 
Google