ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

NEUROBIOLOGIE

 

PARIS, 10 avril 2014


L'origine neurobiologique du trouble du déficit de l'attention confirmée
Une étude vient de confirmer, chez la souris, l'origine neurobiologique du trouble du déficit de l'attention (TDA), un syndrome dont les causes restent mal connues. Des chercheurs du CNRS, de l'université de Strasbourg et de l'Inserm1 ont identifié une structure cérébrale, le colliculus supérieur, dont l'hyperstimulation entraine des modifications de comportement similaires à celles de certains patients souffrant de TDA. Leurs travaux montrent aussi une accumulation de noradrénaline dans la zone concernée, mettant en lumière un rôle de ce médiateur chimique dans les troubles de l'attention. Ces résultats sont publiés dans la revue Brain Structure and Function.
Le trouble du déficit de l'attention touche entre 4 et 8% des enfants. Il se manifeste principalement par une perturbation de l'attention, une impulsivité verbale et motrice, parfois accompagnés d'hyperactivité. Environ 60% de ces enfants présenteront encore des symptômes à l'âge adulte. Il n'existe à ce jour aucun traitement curatif. Seule l'administration de psychostimulants améliore l'état des patients, avec cependant des effets secondaires importants, comme la prédisposition à des dépendances à l'âge adulte. Une controverse persistante autour de l'origine neurobiologique de ce trouble a freiné le développement de nouveaux traitements.
L'étude strasbourgeoise s'intéresse au comportement de souris transgéniques présentant un défaut développemental au niveau du colliculus supérieur. Cette structure, située dans le cerveau moyen, est une plaque tournante sensorielle impliquée dans le contrôle de l'attention et de l'orientation visuelle et spatiale. Les souris étudiées sont caractérisées par une duplication des projections neuronales entre le colliculus supérieur et la rétine. Cette anomalie provoque une hyperstimulation visuelle du colliculus supérieur, dans lequel on trouve également un excès de noradrénaline. Les effets de ce neurotransmetteur, qui varient chez différentes espèces, sont encore mal connus. Cependant, ce déséquilibre en noradrénaline est associé à des changements comportementaux significatifs chez les souris porteuses de la mutation génétique. En les étudiant, les chercheurs ont observé une perte de l'inhibition : les souris hésitent par exemple moins à pénétrer dans un environnement hostile. Elles ont en fait des difficultés à prendre en compte les informations pertinentes et font preuve d'une forme d'impulsivité. Ces symptômes rappellent ceux des patients adultes souffrant d'une des formes du TDA.
Actuellement, les travaux fondamentaux sur le TDA utilisent surtout des modèles animaux obtenus par des mutations perturbant les voies de production et de transmission de la dopamine. Chez les souris au colliculus supérieur malformé, ces voies sont intactes. Les modifications interviennent ailleurs, au niveau des réseaux de neurones du cerveau moyen. Utiliser ces nouveaux modèles permettrait de développer une approche plus globale du TDA, en élargissant le périmètre classique des recherches sur ses causes. Caractériser plus précisément les effets de la noradrénaline sur le colliculus supérieur pourrait donc ouvrir la voie à des stratégies thérapeutiques innovantes.

 

DOCUMENT               CNRS                 LIEN

 
 
 
initiation musicale toulon  

BACTÉRIES TRICHEUSES

 

Comment les microcolonies de bactéries protègent-elles leur production des tricheuses  ?


28 août 2013
Cellule , LPS - UMR 8550 , bactérie , mécanisme , biophysique
En suivant la croissance de microcolonies de bactéries, des physiciens ont montré qu’une des molécules nécessaires au développement de ces cellules est échangée directement de voisine à voisine et de manière préférentielle entre bactéries d’une même lignée. Ce comportement coopératif favorise le développement des consœurs aux dépens des tricheuses qui utilisent les molécules produites sans en produire elles-mêmes.

Télécharger le PDF

Comment la sélection naturelle favorise-t-elle les comportements coopératifs au sein d’une même espèce observée à toutes les échelles de la biodiversité, des humains aux microbes ? Chez les oiseaux, les fourmis ou les abeilles, des marqueurs génétiques dirigent le produit de la coopération vers des individus semblables donc aussi coopérateurs. Chez les bactéries, la coopération passe généralement par la sécrétion de molécules bénéficiant à d’autres cellules réceptrices. Comment dans ce cas éviter que ces molécules produites ne soient utilisées par d’autres bactéries, non productrices  ? Des physiciens du Laboratoire de Physique Statistique de l’ENS - LPS ENS (CNRS / ENS / UPMC / Univ. Paris Diderot), de l’Institut de biologie de l’Ecole Normale Supérieure (IBENS) et des biologistes du laboratoire Biotechnologie et signalisation cellulaire (BSC) de l’Institut supérieur de biotechnologie de Strasbourg, viennent de montrer que pour des microcolonies de bactéries croissant sur un substrat solide, les échanges de siderophore, une molécule servant à récupérer du fer dans l’environnement, se font de manière privilégiée par une circulation locale entre cellules voisines. Ce mécanisme limite la diffusion de ce « bien public » dans tout l’environnement. Ce travail est publié dans la revue Proceedings of the National Academy of Sciences.
Pour récupérer le fer nécessaire à leur croissance, les bactéries sont obligées de sécréter des molécules, appelées sidérophores. Relâchées dans l’environnement, ces molécules forment avec le fer un complexe chimique qui est ensuite importé dans les cellules. En utilisant un sidérophore fluorescent, les biophysiciens ont mesuré à l’échelle cellulaire la dynamique de la répartition des sidérophores dans une colonie de bactéries de P. Aeruginosa. Ils ont montré que la distribution de ce siderophore dans la colonie n’est pas dominée par la diffusion libre dans l’environnement mais par une circulation locale entre voisins immédiats. Ils ont aussi mis en évidence au niveau microscopique que la croissance d’une bactérie était d’autant plus grande que la concentration en sidérophore chez ses voisines était importante, favorisant ainsi la coopération au centre des colonies productrices et limitant l’exploitation par des bactéries non-productrices à la périphérie. Cette étude ouvre des perspectives sur les dynamiques de diffusion à l’intérieur des biofilms et sur l’intérêt à croître en groupe compact.

 

DOCUMENT               CNRS                     LIEN

 
 
 
initiation musicale toulon  

L'ANXIÉTÉ CHEZ UN INVERTÉBRÉ

 

Paris, 13 Juin 2014


L'observation de l'anxiété, pour la première fois chez un invertébré, ouvre une nouvelle voie d'étude
Pour la première fois, des chercheurs du CNRS et de l'université de Bordeaux viennent de produire et d'observer un comportement d'anxiété chez l'écrevisse, qui disparaît lorsqu'on lui injecte une dose d'anxiolytiques. Ces travaux, publiés dans Science le 13 juin 2014, montrent que les mécanismes neuronaux liés à l'anxiété se sont conservés tout au long de l'évolution. L'analyse de ce comportement ancestral chez un modèle animal simple révèle, en outre, une nouvelle voie pour l'étude des bases neuronales de cette émotion.
L'anxiété peut être définie comme une réponse comportementale au stress consistant en une appréhension durable des événements à venir. Elle prépare les individus à détecter les menaces et à les anticiper de façon adaptée. Elle favorise donc leur survie. Cependant, lorsque le stress est chronique, l'anxiété devient pathologique et peut conduire à un état dépressif.

Jusqu'à présent l'anxiété non pathologique n'avait été décrite que chez l'homme et quelques vertébrés. Pour la première fois, elle est observée chez un invertébré. Pour y parvenir, les chercheurs de l'Institut de neurosciences cognitives et intégratives d'Aquitaine (CNRS/université de Bordeaux) et de l'Institut des maladies neurodégénératives (CNRS/ université de Bordeaux) ont d'abord exposé les écrevisses à un champ électrique de façon répétée durant trente minutes. Ensuite, ils ont placé les écrevisses dans un labyrinthe aquatique en forme de croix. Deux des bras étaient éclairés, ce qui naturellement rebute les écrevisses, et deux étaient dans l'obscurité, ce qui, au contraire, les rassure.

Les chercheurs ont alors analysé le comportement exploratoire des écrevisses. Les écrevisses rendues anxieuses ont eu tendance à rester dans les parties sombres du labyrinthe, contrairement aux écrevisses témoin, qui ont exploré l'ensemble du labyrinthe. Ce comportement est une réponse adaptative au stress subi : l'animal cherche à minimiser les risques de rencontrer un agresseur. Cet état émotionnel s'est estompé au bout d'une heure environ.

L'anxiété des écrevisses est corrélée à un accroissement de la concentration de sérotonine dans leur cerveau. Ce neurotransmetteur est impliqué dans de nombreuses régulations physiologiques tant chez les invertébrés que chez l'homme. Elle est libérée dans des contextes de stress et régule plusieurs réponses liées à l'anxiété, comme l'augmentation des taux de glucose dans le sang. Les chercheurs ont aussi montré qu'en injectant un anxiolytique d'usage courant chez l'humain (benzodiazépine), le comportement d'évitement de l'écrevisse est aboli. Ceci montre à quel point les mécanismes neuronaux permettant d'établir ou d'inhiber le comportement anxieux sont apparus tôt dans l'évolution et se sont bien conservés au cours du temps.

Ces travaux offrent aux chercheurs qui étudient le stress  et  l'anxiété, un modèle animal unique. Dotée d'un système nerveux simple dont les neurones sont faciles à enregistrer, l'écrevisse pourrait permettre de mieux comprendre les mécanismes neuronaux en œuvre dans un contexte stressant, ainsi que le rôle de neurotransmetteurs tels que la sérotonine ou le GABA. A présent, l'équipe veut étudier l'anxiété chez l'écrevisse soumise à un stress social et analyser les changements neuronaux qui s'opèrent lorsque l'anxiété se prolonge sur plusieurs jours.

 

DOCUMENT                CNRS               LIEN

 
 
 
initiation musicale toulon  

LA SYSTÉMATIQUE GÉNÉTIQUE

 

Texte de la 431e conférence de l'Université de tous les savoirs donnée le 10 juillet 2002

Sylvie Mazan, « Evolution et Développement : la rencontre de deux logiques pour le vivant »
Dans le domaine des sciences humaines, la compréhension d'une société et de son fonctionnement implique des approches multiples, visant par exemple à la replacer dans un contexte géographique, économique ou culturel et les contraintes qu'il implique. Mais ces analyses ne sauraient exclure une approche historique, retraçant à la fois son origine et les changements qui l'ont modelée au cours du temps. Il en est de même dans le cas du monde vivant. Ainsi, chez les animaux, la morphologie qui caractérise une espèce peut être comprise sous des aspects multiples (adaptation à un contexte écologique ou environnemental, résultat des processus génétiques et cellulaires complexes qui ont lieu au cours de l'embryogenèse). Mais elle est également le résultat d'une évolution, difficilement prévisible, dont il est particulièrement intéressant de retracer les étapes. Une telle approche s'inscrit donc dans une démarche de type historique. Au cours des vingt dernières années, la biologie moléculaire et la génétique du développement ont fourni, de façon inattendue, des outils nouveaux pour comprendre l'évolution des espèces. Elles ont conduit à l'émergence d'une nouvelle discipline, située à l'interface entre la génétique du développement et les sciences de l'évolution, et souvent appelée "Evo-Devo" par les spécialistes. Le but principal des recherches conduites dans ce domaine est de comprendre l'évolution des formes au sein du monde vivant, en retraçant l'histoire évolutive des gènes qui contrôlent la morphogenèse au cours du développement embryonnaire. Comme on le verra plus loin, ce type d'approche pourrait également permettre de relever d'autres enjeux, tout aussi importants.

Evolution et développement : un lien ancien longtemps oublié
L'idée de rapprocher les sciences de l'évolution et l'étude du développement embryonnaire n'est pas neuve. Elle trouve ses origines dès le début du XIXe siècle, alors que la théorie de l'évolution n'est pas encore publiée. Ainsi, le grand embryologiste Karl Ernst Von Baer, découvreur de l'Suf des mammifères mais également de la notochorde, structure embryonnaire qui caractérise un grand groupe de métazoaires incluant les vertébrés, propose à travers quatre grands principes, "Les Lois de Von Baer", une classification des espèces sur la base de leurs caractéristiques embryonnaires. Pour lui, les caractères généraux caractérisant un taxon donné apparaissent à des stades précoces du développement, alors que les caractères spécialisés d'un sous-groupe, voire d'une espèce, se mettent en place à des étapes tardives de l'embryogenèse. Ce scénario se traduit donc par des ressemblances entre embryons précoces, et cela même chez des espèces phylogénétiquement très éloignées comme l'ensemble des métazoaires, les différences s'accumulant ensuite au cours du développement pour aboutir à des morphologies potentiellement très divergentes. Dans cette vue, l'embryon d'une espèce donnée ne passe jamais par les stades adultes d'une espèce considérée comme "inférieure" (cette notion de hiérarchie entre espèces étant bien sûr aujourd'hui totalement abandonnée), mais en diverge de plus en plus au cours de son développement. La conception de Von Baer est assez proche de notre vision moderne en ce qu'elle n'implique pas de hiérarchie entre taxa au sein du monde vivant, mais plutôt une divergence à partir d'un "type" commun qui fonde l'unité du groupe. Sa faiblesse réside cependant en l'absence de mécanisme expliquant cette unité, dont nous savons aujourd'hui qu'elle est liée à une ascendance commune au cours de l'évolution. Par ailleurs, l'idée d'une conservation préférentielle des mécanismes mis en jeu précocement au cours du développement reste difficile à évaluer. Une conception radicalement différente est défendue dans la deuxième moitié du XIXe siècle par un courant de pensée dont le chef de file est Ernst Haeckel. Souvent résumée par la formule célèbre "l'ontogénie récapitule la phylogénie", cette conception intègre la notion d'évolution mais soutient l'idée selon laquelle ces organismes évoluent par l'addition de nouveaux stades de développement aux formes adultes d'espèces "inférieures". Elle aboutit ainsi à une vision hautement hiérarchisée du monde vivant qui rejoint finalement l'échelle aristotélicienne des êtres et une conception gradiste de l'évolution, qui modèlerait les espèces "supérieures" par complexification d'espèces inférieures. Ces vues sont aujourd'hui totalement abandonnées. En dépit de ces difficultés et des contradictions présentes dans ces visions du monde qui s'affrontent, l'idée d'un lien fort entre l'évolution et le développement embryonnaire est donc présente dès la fin du XIXe siècle. Charles Darwin l'exprime particulièrement clairement à travers les deux citations suivantes, extraites de L'origine des espèces "Embryology is to me by a the strongest class of facts in favor of change of forms" ou "Community of embryonic structures reveals community of descent"m.

Fondements techniques et conceptuels
Jusqu'aux années 1980, l'intérêt pour les relations entre évolution et développement va connaître une longue éclipse. C'est pourtant au cours de cette période que se mettent en place des outils techniques et conceptuels essentiels pour l'émergence de la discipline "Evolution -Développement". Ces avancées concernent trois domaines, bien séparés pendant la majeure
partie du XXe siècle, la génétique formelle, l'embryologie expérimentale et la cladistique. De façon indiscutable, l'essor récent de la génétique du développement a joué un rôle considérable dans l'intérêt renouvelé que suscitent aujourd'hui les relations entre évolution et développement. La caractérisation dans les années 1980 des gènes qui contrôlent la morphogenèse fournit en effet une base nouvelle pour des comparaisons à très grande échelle évolutive, entre taxa, mais aussi entre des espèces relativement proches, voire entre sous-populations d'une même espèce. Par ailleurs, à cette époque les outils conceptuels nécessaires à des comparaisons rigoureuses ont été mis en place, notamment sous l'impulsion de Willi Hennig. Les principes posés par ce dernier -base strictement généalogique pour les regroupements ; principe de parcimonie - restent aujourd'hui valides, même si les outils méthodologiques, mathématiques ou probabilistes, ont été considérablement améliorés. La rencontre entre évolution et développement n'aurait pu avoir lieu sans ces outils, indispensables aux analyses et aux comparaisons de séquences. Enfin, les progrès récents de la biologie moléculaire ont également constitué un facteur important dans l'essor de la discipline "Evolution-Développement". En particulier, l'utilisation de l'amplification génique ("Polymerase Chain Reaction") et la mise au point de techniques permettant de visualiser rapidement un domaine d'expression génique chez l'embryon ouvrent la possibilité d'étudier les "gènes de développement" chez un spectre très large d'espèces, choisies pour leur intérêt en termes évolutifs, et non chez les seuls organismes modèles, drosophile ou nématode chez les protostomiens, oursins, ascidies et vertébrés chez les deutérostomiens.

Des gènes conservés à très grande échelle évolutive : à la recherche des origines
Une des plus grandes surprises de la génétique du développement a émergé de la comparaison entre deux organismes dont les morphologies sont a priori fort distantes, la mouche et la souris. Très vite, il est en effet apparu que les acteurs moléculaires impliqués dans le contrôle du développement embryonnaire - facteurs de transcription, voies de signalisation, protéines de structure - sont conservés entre insectes et vertébrés. Bien plus, les gènes codant pour un grand nombre de facteurs de transcription interviennent dans des processus très similaires : morphogenèse de l'Sil dans le cas des gènes à homéodomaine Pax6 ; spécification de l'identité de segments dans le cas des gènes du complexe Hox ; régionalisation du cerveau dans le cas des gènes Otx ou Emx ; formation du cSur dans le cas du gène tinman. En accord avec la conservation en séquence primaire de ces protéines, les régions codantes sont même souvent très largement interchangeables entre des espèces très éloignées, comme la mouche, la drosophile et la souris. Ainsi, chez la drosophile, une des façons de mettre en évidence le rôle du gène Pax6 dans la morphogenèse de l'Sil est d'induire artificiellement son expression dans des populations cellulaires dans lesquelles il n'est normalement pas transcrit : on obtient alors l'apparition de structures visuelles -ou simplement - photoréceptrices - à des localisations surprenantes comme la patte ou l'extrémité des antennes. Or, il s'avère que le même effet est obtenu avec des séquences codantes de poulpe ou de souris ! Que signifient ces expériences ? Elles démontrent d'abord et avant tout que les protéines d'insectes et de mammifères possèdent des propriétés biochimiques très similaires, et que les interactions moléculaires nécessaires à la formation d'un organe visuel sont largement conservées à très grande échelle évolutive. Mais elles poussent aussi parfois à des interprétations plus poussées - et plus hypothétiques -, comme des homologies d'organes entre phylums éloignés. Ainsi, dans le cas du gène Pax6 précédemment évoqué, les résultats obtenus ont conduit une partie de la communauté scientifique à soutenir l'idée que des organes visuels élaborés, dont dériveraient les yeux des insectes et des mammifères actuels, étaient déjà présents chez le lointain ancêtre commun des protostomiens et des deutérostomiens. Le même type d'arguments, étendu à d'autres mécanismes génétiques impliqués dans la formation du cerveau, du cSur ou la segmentation, a également conduit à émettre l'idée que ce lointain ancêtre commun présentait déjà un grand nombre des caractéristiques retrouvées chez les métazoaires actuels. Cette vue reste cependant un sujet de controverses et il n'est pas exclu que les homologies dont témoignent les similitudes des systèmes génétiques caractérisés chez les métazoaires concernent des mécanismes de différenciation cellulaire plutôt que des organes proprement dits.

Quels rapports entre diversification morphologique et diversification génétique ?
Si les systèmes génétiques et les processus développementaux qu'ils contrôlent présentent de telles similitudes chez les métazoaires, comment expliquer la diversité fascinante de formes, qui est observée au sein d'un taxon ? Les données actuelles suggèrent de multiples mécanismes, dont les contributions relatives restent à évaluer. Il est tout d'abord très clair que les territoires, ou les chronologies, d'expression des facteurs de transcription qui contrôlent l'ontogenèse peuvent varier de façon substantielle même entre espèces proches, ce qui pourrait contribuer de façon importante à la diversité morphologique. Un tel scénario a été remarquablement mis en évidence par l'étude d'un petit poisson présent près des côtes du Mexique, Astyanax mexicanus. Cette espèce compte plusieurs sous-populations vivant dans des habitats différents. L'une d'entre elles, qui réside dans des grottes sous-marines, donc un environnement dépourvu de lumière, est caractérisée par une atrophie complète des organes visuels. Dans ce cas, cette évolution morphologique apparaît clairement liée à la perte du territoire d'expression embryonnaire d'un gène qui code pour une protéine de signalisation, sonic hedgehog et il est intéressant de noter que ce changement est lié non seulement à une perte de fonction (vision) mais également à une augmentation en taille des mâchoires, susceptible de conduire à un avantage sélectif. Cet exemple de micro-évolution est particulièrement intéressant en ce qu'il permet de retracer un scénario évolutif proprement dit. S'il est souvent difficile de retracer les événements de modification/sélection vraisemblablement complexes qui ont eu lieu au cours de l'évolution, on peut cependant noter que de telles variations dans les profils d'expression des gènes qui contrôlent le développement embryonnaire ne sont pas rares. Dans certains cas, elles peuvent être corrélées à des changements morphologiques. Les gènes du complexe Hox qui, chez les mammifères comme chez les arthropodes, sont impliqués dans le contrôle génétique de l'identité des segments du corps, ont fourni un modèle particulièrement riche à cet égard. Ainsi, chez les amniotes, la colonne vertébrale est une structure osseuse clairement segmentée et les gènes Hox jouent un rôle essentiel dans le contrôle génétique de l'identité des vertèbres, cervicales, thoraciques, lombaires ou sacrées, qui la composent. Il se trouve que chez le python, dont le squelette axial est formé de centaines de vertèbres, ces dernières portent pour la plupart des côtes, et présentent donc en cela une identité thoracique. Ce changement est corrélé à des variations très claires des territoires d'expression de plusieurs gènes Hox impliqués dans la spécification thoracique, suggérant ainsi un lien possible entre une évolution morphologique et une évolution génétique. D'autres exemples de tels liens impliquant ce système génétique ont été proposés chez les arthropodes, dont les segments, porteurs ou non d'organes aux fonctions variées, comme des ailes, des pattes articulées, des balanciers, ou des pinces, présentent des caractéristiques morphologiques bien différentes selon le sous-groupe considéré.
Les changements au niveau des régions codantes, et donc des protéines codées par les "gènes de développement " fournissent un autre mécanisme moléculaire majeur, susceptible de modifier les programmes génétiques de l'ontogenèse au cours de l'évolution, et de contribuer ainsi à la diversité morphologique. Là encore, des différences claires des propriétés biochimiques de certaines protéines Hox, liées à l'acquisition de domaines structuraux bien identifiés, ont été décrites entre certains taxons comme les arthropodes et les onychophores qui sont des petits vers au corps segmenté, quelquefois appelés péri-pattes. Ces différences semblent pouvoir déterminer le nombre de segments porteurs de pattes chez certaines espèces, trois strictement chez les insectes, mais plusieurs dizaines chez les onychophores.
Les cascades d'événements moléculaires responsables de ces changements, mutations ponctuelles ou réarrangements chromosomiques, sont généralement mal connus. On pense cependant que certains remaniements génomiques, comme les duplications géniques, pourraient favoriser l'acquisition de nouvelles fonctions par les gènes qui contrôlent le développement embryonnaire, et donc l'apparition d'innovations morphologiques ou physiologiques. De fait, plusieurs grandes transitions au sein du règne animal (transition des diploblastes aux triploblastes, caractérisés par l'apparition du troisième feuillet embryonnaire, le mésoderme ; émergence des vertébrés) pourraient être associées à des duplications géniques massives. Toutefois, l'évolution des familles multigéniques fait l'objet de modèles très différents dans leurs conséquences et reste actuellement mal connue.

Analyse comparative et génétique : deux outils complémentaires pour comprendre les génomes ?
Comme on l'a vu précédemment, l'étude des relations entre évolution et développement repose essentiellement sur les comparaisons des mécanismes génétiques qui contrôlent le développement embryonnaire. La comparaison d'organismes très éloignés, comme la drosophile et la souris, permettra sans doute de préciser encore les réseaux génétiques anciens, déjà présents chez le dernier ancêtre des bilatériens (espèces à symétrie bilatérale). Mais l'interprétation de ces résultats pourrait bien rester délicate et laisser totalement insatisfaite notre curiosité quant à la forme ou les fonctions physiologiques de ce parent éloigné. L'étude des variations génétiques qui se greffent sur ce réseau ancestral, et la recherche de leurs corrélations avec d'éventuels changements morphologiques, connaît actuellement un essor justifié. Là encore toutefois, les interprétations de ces travaux, qui en aucun cas ne permettent de reconstituer des scénarios évolutifs réels, restent limitées. Sans doute l'intégration plus systématique d'approches de micro-évolution et de la biologie des populations sera-t-elle un élément important pour comprendre l'évolution du monde vivant dans sa diversité dasn une synthèse encore plus large ?
Mais les approches et les outils développés par la communauté Evo-Devo pourraient aussi dépasser largement le cadre évidemment très fondamental de cette discipline toute récente. Les comparaisons entre espèces plus ou moins éloignées fournissent en effet un outil privilégié pour identifier les contraintes qui s'exercent sur les séquences des gènes impliqués dans le contrôle de notre développement embryonnaire, de nos processus physiologiques ou de nos comportements. A ce titre, elles pourraient éclairer de façon significative les masses de données, encore bien peu défrichées, que constituent les génomes et en tout premier lieu le génome humain. Il s'agirait dans ce cas d'un bel exemple des retombées que peut avoir la recherche fondamentale sur un domaine plus appliqué, dont les enjeux sociaux économiques et médicaux sont aujourd'hui évidents.

 

VIDEO                CANAL  U                LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ] Précédente - Suivante
 
 
 
Google