ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

NOUVELLES FIBRES OPTIQUES

 

Paris, 24 octobre 2014


Un nouveau mode de diffusion de la lumière dans de minuscules fibres optiques

Des chercheurs de l'institut Femto-ST (CNRS/UFC/UTBM/ENSMM)1, en collaboration avec des collègues du Laboratoire Charles Fabry (CNRS/Institut d'Optique Graduate School) viennent de découvrir un nouveau mode de diffusion de la lumière dans de minuscules fibres optiques 50 fois plus fines qu'un cheveu ! Ce phénomène, qui varie selon l'environnement de la fibre, pourrait être exploité pour concevoir des capteurs innovants et ultra-sensibles. Ces travaux sont publiés le 24 octobre 2014 dans la revue Nature Communications.
Les microfibres optiques sont des fibres de verre effilées 50 fois plus fines qu'un cheveu, au diamètre proche voire inférieur au micromètre (un millième de millimètre). Pour produire ces minuscules objets, des chercheurs du Laboratoire Charles Fabry ont chauffé et étiré des fibres optiques utilisées pour les télécommunications et mesurant 125 micromètres de diamètre. La suite de l'étude s'est déroulée à l'institut Femto-ST, à Besançon. En injectant un faisceau laser dans ces fines mèches de verre, des chercheurs du CNRS ont observé, pour la première fois, un nouveau mode de diffusion Brillouin2 de la lumière, impliquant des ondes acoustiques3 de surface. Cette découverte a ensuite été confirmée par une simulation informatique, qui a permis de vérifier le mécanisme physique en jeu.

Comme le diamètre des fibres utilisées est inférieur à la longueur d'onde de la lumière utilisée (1,5 micromètre, dans l'infrarouge), celle-ci y est extrêmement confinée. Sur son trajet, la lumière fait vibrer de manière infime le matériau, déplaçant la matière de quelques nanomètres (ou millionièmes de millimètre). Cette déformation se manifeste par une onde acoustique qui se déplace à la surface de la fibre à 3 400 mètres par seconde, d'après les résultats des chercheurs. L'onde agit en retour sur la propagation de la lumière : une partie du rayonnement lumineux est renvoyée en sens inverse et avec une longueur d'onde différente.

Ce phénomène n'avait jamais été observé jusqu'ici, car il se produit uniquement lorsque la lumière est confinée dans une fibre plus fine que sa longueur d'onde. En effet, dans une fibre optique standard, la lumière se propage essentiellement dans le cœur de la fibre (d'un diamètre de 10 micromètres). Par conséquent, elle ne génère pas d'ondes de surface.

Comme elles se déplacent à la surface des microfibres, les ondes générées par le confinement de la lumière sont sensibles aux facteurs de l'environnement, tels que la température, la pression ou le gaz ambiant. Cela ouvre la voie à la conception de capteurs optiques4 très sensibles et très compacts pour l'industrie. Ces résultats contribuent également à approfondir nos connaissances sur les interactions fondamentales entre la lumière et le son, à l'échelle de l'infiniment petit.

 

DOCUMENT              CNRS              LIEN

 
 
 
initiation musicale toulon  

NANOTECHNOLOGIE

 

Paris, 26 octobre 2014


Des colliers de nanoparticules d'or pour guider la lumière jusqu'au nanomètre


Des nanoparticules cristallines d'or alignées puis fusionnées en longues chaines peuvent servir à confiner l'énergie lumineuse à l'échelle nanométrique tout en permettant sa propagation à grande distance. C'est ce que vient de démontrer une équipe pluridisciplinaire du Centre d'élaboration de matériaux et d'études structurales (CEMES, CNRS), en collaboration avec des physiciens de Singapour et des chimistes de Bristol. Ces travaux sont publiés en ligne sur le site de la revue Nature Materials le 26 octobre.
La lumière peut servir à transmettre des informations. Cette propriété est par exemple utilisée dans la fibre optique et offre une alternative intéressante à la microélectronique1. L'utilisation de la lumière permet d'augmenter la vitesse de transmission et de réduire les pertes d'énergie qui se produisent par réchauffement lorsqu'un signal électrique est utilisé. Cependant il reste plusieurs défis à relever, notamment celui de la miniaturisation : avec la fibre optique il est en effet difficile de confiner la lumière dans une largeur inférieure au micromètre (soit 10-6 mètres).
Les électrons circulent librement dans les métaux et parfois se mettent à osciller collectivement à leur surface sous l'effet de la lumière, comme dans les métaux nobles tels l'or et l'argent. Les propriétés de ces oscillations collectives, appelées plasmons, offrent depuis une vingtaine d'années une voie prometteuse vers un confinement sub-longueur d'onde (c'est-à-dire inférieur au micromètre) de l'énergie lumineuse. En transmettant cette énergie portée par les photons aux électrons en mouvement, il est possible de transporter de l'information dans des structures plus étroites que les fibres optiques. Pour atteindre des confinements encore plus importants, la plasmonique2 s'intéresse désormais aux propriétés optiques de nanoparticules cristallines. La surface cristalline lisse évite de perturber les oscillations des électrons et limite les pertes d'énergie. Exploiter les propriétés de ces nanoparticules devrait donc permettre simultanément des confinements de l'ordre du nanomètre et le transport de l'information sur de grandes distances.
Dans cette étude, les chercheurs ont démontré que lorsque des nanoparticules d'or de dix nanomètres de diamètre sont alignées sous forme de chaine, les plasmons qu'elles portent génèrent des oscillations particulières, propices à la propagation ultra-confinée. Cependant à chaque passage entre deux nanoparticules, il existe une perte d'énergie. Si cette caractéristique peut être exploitée pour certaines applications qui nécessitent des sources de chaleur très localisées, notamment en médecine, elle ne favorise pas la propagation longue distance.
Les chercheurs ont donc délicatement fusionné les nano-perles, en focalisant un faisceau électronique à haute énergie, de façon à former un réseau continu et cristallin. Ils ont alors observé que les pertes d'énergie sont réduites et que les plasmons sont libres d'osciller sur de très grandes distances tout en restant confinés suivant le diamètre des nanoparticules. Au sein de ce collier de seulement dix nanomètres de large, l'information peut voyager jusqu'à 4000 nanomètres.
Un autre défi relevé par cette étude a été de cartographier, avec une précision exceptionnelle, les oscillations des électrons observées à la surface de la chaine de nanoparticules. Les différents types de mouvement des plasmons ont été caractérisés par une technique de microscopie appelée spectroscopie de perte d'énergie des électrons (EELS) dont la très fine résolution spatiale et spectrale a permis aux chercheurs de proposer un nouveau modèle théorique du comportement des plasmons. Les simulations basées sur ce modèle reproduisent les expériences avec une fidélité sans précédent.
Ces travaux qui résultent d'une collaboration à long terme avec des équipes de Bristol et de Singapour pourraient mener à une miniaturisation extrême du guidage de la lumière et ouvrir la voie vers des applications en matière de capteur, pour le photovoltaïque par exemple, et en télécommunication.

 

DOCUMENT           CNRS            LIEN

 
 
 
initiation musicale toulon  

UN SYSTÈME SOLAIRE TRIPLE EN FORMATION

 

Paris, 30 octobre 2014


Voyage au coeur d'un système solaire triple en formation


Une équipe internationale d'astronomes, dont des chercheurs du LAB (CNRS/Université de Bordeaux), de l'IPAG (CNRS/Université Joseph Fourier Grenoble 1) et de l'IRAM (CNRS/MPG/IGN), a mené l'étude la plus précise à ce jour du cocon de gaz et de poussières du système GG Tau A. En combinant des observations complémentaires aux longueurs d'onde submillimétriques (ALMA et IRAM) et infrarouges (VLTI/ESO), les chercheurs ont pu mettre en évidence la dynamique complexe au sein de GG Tau. Ils ont ainsi détecté pour la première fois des mouvements de matière démontrant que des exoplanètes peuvent se former non seulement autour d'un des membres de ce trio d'étoiles jeunes, mais aussi à très grande distance dans le disque entourant ces trois soleils. Ce travail observationnel, publié le 30 octobre dans la revue Nature, révèle une histoire plus complexe qu'on ne l'imaginait.
Si les découvertes observationnelles récentes ont démontré l'existence de nombreuses planètes autour des étoiles doubles, leur formation se heurtait au problème des instabilités gravitationnelles engendrées par la nature binaire de ces astres. Les observations d'étoiles jeunes binaires sont encore trop rares pour fournir une image détaillée de ces processus. Jusqu'à très récemment, GG Tau A, située à près de 450 années-lumière de la Terre dans la constellation du Taureau, était connue comme une étoile binaire avec deux composantes Aa et Ab. Mais des mesures infrarouges récentes réalisées avec les instruments du VLT et du VLTI (ESO) ont révélé que GG Tau A est en fait un système stellaire triple1 : GG Tau Ab est elle-même une étoile binaire. L'étoile centrale Aa est suffisamment éloignée du couple Ab pour être entourée d'un disque circumstellaire, observé dès 2011 avec l'interféromètre de l'IRAM.

Autour de ce système stellaire triple, les chercheurs ont déjà mis en évidence un disque de gaz et de poussières en rotation, évidé en son centre par les effets de marée gravitationnels. En tournant les unes autour des autres, les trois étoiles créent en effet une zone gravitationnellement instable appelée cavité, où la matière ne peut que transiter avant de tomber sur les étoiles centrales. Plus loin, là où réside l'anneau externe de matière, le champ gravitationnel n'est plus perturbé et la matière en rotation peut s'organiser en une structure stable. L'existence d'une cavité centrale autour de GG Tau A, connue dès les années 1990 grâce aux observations de l'interféromètre de l'IRAM, confirmait en partie ces prédictions théoriques. Dans les années 2000, on a détecté la présence de gaz dans cette cavité, mais la dynamique précise de ce gaz, pierre essentielle à la compréhension des mécanismes d'accrétion donnant naissance aux planètes, restait largement méconnue.

Dans cette nouvelle étude, des observations du monoxyde de carbone (CO sous forme gazeuse) et de l'émission des grains de poussière autour de GG Tau A ont été obtenues de manière complémentaire avec les interféromètres ALMA (Chili) et IRAM (Alpes françaises). Elles ont permis de lever une partie du voile sur la répartition de la matière et sur la dynamique à l'intérieur de la cavité, avec une précision encore jamais atteinte dans ce domaine. Les images montrent en effet un filament de gaz provenant de l'anneau externe tombant vers les étoiles centrales. La quantité de gaz ainsi transportée se révèle suffisante pour alimenter le disque interne autour de GG Tau Aa. Les mouvements de gaz observés confirment ainsi les prédictions des simulations numériques antérieures. Ils démontrent que la matière provenant de l'anneau externe est capable de nourrir le disque interne autour de GG Tau Aa pendant assez longtemps pour éventuellement permettre la formation des exoplanètes.

Si ce résultat était attendu, le suivant l'était moins : les deux cartes de l'émission du CO révèlent une surbrillance remarquable sur le bord externe de l'anneau autour du système stellaire triple. Son étude détaillée montre qu'elle est deux fois plus chaude que le milieu environnant et qu'il pourrait s'agir de la signature d'une jeune exoplanète géante en cours de formation. Cette planète serait en train de creuser un fin sillon dans le disque externe, mais la détection d'une telle structure reste pour l'heure hors de portée des instruments. La mise en service prochainement des antennes NOEMA2 de l'IRAM sur le plateau de Bure sera, sans nul doute, un atout majeur pour en savoir plus sur GG Tau, un système de soleils jeunes qui n'a pas fini de livrer ses mystères.

 

DOCUMENT            CNRS             LIEN

 
 
 
initiation musicale toulon  

ORIGINES DE L'UNIVERS ...

 

Paris, 22 Septembre 2014


À la recherche des origines de l'Univers : première étape pour NOEMA
L'observatoire du plateau de Bure de l'IRAM1 (CNRS/MPG/IGN) dans les Alpes françaises accueillera d'ici à cinq ans, six antennes supplémentaires grâce au projet NOEMA (NOrthern Extended Millimeter Array). La première de ces six antennes est inaugurée lundi 22 septembre 2014 au siège de l'IRAM près de Grenoble. Une fois terminé, NOEMA deviendra ainsi le radiotélescope millimétrique le plus puissant de l'hémisphère Nord. Il permettra notamment aux astronomes d'observer les galaxies et les trous noirs aux confins de l'Univers mais aussi d'identifier des éléments clefs dans la formation des étoiles et des systèmes planétaires.
La radioastronomie millimétrique joue un rôle essentiel dans l'astrophysique moderne : elle rend possible l'étude de l'origine et de l'évolution de l'Univers. NOEMA (NOrthern Extended Millimeter Array) appartient à une nouvelle génération de radiotélescopes. Lorsqu'il sera terminé, cet instrument sera l'interféromètre le plus puissant de l'hémisphère Nord. Grâce à six antennes supplémentaires de 15 mètres de diamètre chacune et à de nouveaux systèmes de réception d'une sensibilité extrême, NOEMA aura une précision 10 fois meilleure que celle de l'observatoire actuel et offrira une résolution spatiale 4 fois plus fine que son prédécesseur. Ces récepteurs sont entièrement conçus et réalisés dans les laboratoires de l'institut IRAM (CNRS/MPG/IGN) en utilisant les technologies des très hautes fréquences (teraHertz), des détecteurs supraconducteurs et des technologies de basse température (cryogénie).
Ainsi NOEMA, avec une résolution spatiale de 0,2 secondes d'arc2 soit celle du VLT de l'ESO, sera en mesure d'obtenir des images précises et inédites de nuages de gaz interstellaires, et des étoiles qui y naissent. Il permettra aux chercheurs d'identifier des molécules interstellaires et d'analyser la poussière cosmique, des éléments clefs dans la formation des étoiles et des galaxies. NOEMA apportera des réponses à quelques-unes des questions les plus fondamentales de l'astronomie moderne : comment se sont formées les toutes premières étoiles ? Comment les grandes structures de l'Univers ont-elles évoluées pour aboutir aux galaxies géantes comme notre Voie Lactée ? Ou comment se forment les systèmes planétaires ?
NOEMA, d'un budget total estimé à 45 millions d'euros, est conjointement financé par les partenaires qui ont fondé l'IRAM : le CNRS en France et la MPG (Max-Planck-Gesellschaft) en Allemagne. La première de ses six antennes est inaugurée le 22 septembre au siège de l'IRAM, en présence de ses contributeurs. Elle sera opérationnelle à la fin de l'année 2014. La deuxième des six nouvelles antennes devrait quant à elle être mise en service l'année prochaine, et il faudra attendre 4 à 5 ans de plus pour voir le projet entièrement terminé avec ses 12 antennes sur le plateau.

 

DOCUMENT              CNRS             LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante
 
 
 
Google