ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
initiation musicale toulon  

UN MÉTAMATÉRIAU ...

 

Paris, 15 décembre 2014


Un métamatériau fait danser le « moonwalk » aux ultrasons
Rendre un objet invisible, augmenter le pouvoir de résolution d'une lentille… les métamatériaux ont des propriétés exceptionnelles pour détourner et contrôler les ondes, notamment le son et la lumière. Des chercheurs du Centre de recherche Paul Pascal (CNRS) et de l'Institut de mécanique et d'ingénierie de Bordeaux (CNRS/Université de Bordeaux/Bordeaux INP/Arts et Métiers ParisTech)1 viennent de développer les premiers métamatériaux en trois dimensions, en croisant formulation physico-chimique et technologie microfluidique2. Il s'agit d'une nouvelle génération de métamateriaux « souples », plus faciles à mettre en forme. Dans leur démonstration, les chercheurs ont fait reculer l'oscillation ultrasonore3, alors que l'énergie transportée par l'onde avançait. Ces travaux ouvrent notamment des perspectives nouvelles en imagerie haute résolution (échographie). Ils sont publiés dans la revue Nature Materials, le 15 décembre 2014.
Depuis les années 2000, la communauté scientifique internationale voit croître de manière exponentielle l'intérêt pour les métamatériaux et leurs propriétés hors du commun. Un métamatériau est un milieu dans lequel la vitesse de propagation de la phase4 des ondes, lumineuses ou acoustiques, peut être négative (on dit que le matériau a un indice de réfraction négatif). Dans un tel milieu, la phase de l'onde (les oscillations successives) et l'énergie transportée par cette même onde se propagent en sens opposé. Une propriété qu'aucun milieu naturel homogène ne possède.

Pour obtenir un métamatériau, il est nécessaire de fabriquer un milieu hétérogène contenant un grand nombre d'inclusions (appelées « microrésonateurs »). La méthode usuelle consiste à usiner par micromécanique (gravure, dépôt…) des supports solides qui présenteront les propriétés de métamatériaux selon une ou deux dimensions. Mais cette technique ne permet pas de travailler sur de la matière molle aux échelles micrométriques requises pour les ultrasons, et les matériaux obtenus restent limités à une ou deux dimensions.

Dans cette étude, les chercheurs ont réalisé un nouveau type de métamatériau, en phase fluide, constitué de microbilles de silicone poreux en suspension dans un gel à base d'eau. Ce « métafluide » est le premier métamatériau tridimensionnel fonctionnant à des fréquences ultrasonores. En outre, en raison de son caractère fluide, il peut être fabriqué par des procédés physico-chimiques et des technologies microfluidiques beaucoup plus simples à mettre en œuvre que les techniques de micromécanique.

Les milieux poreux possèdent la propriété d'avoir des célérités du son très faibles (quelques dizaines de mètres par seconde) par rapport à l'eau (1500 mètres par seconde). Grâce à ce fort contraste, la suspension dans son ensemble possède les propriétés d'un métamatériau, lorsque la concentration en billes est suffisante. En effet, en étudiant la propagation d'ondes ultrasonores dans ce milieu, les chercheurs ont mesuré de manière directe un indice de réfraction négatif. Au sein d'un tel métafluide, l'énergie associée à l'onde se propage logiquement de l'émetteur au récepteur, comme attendu, tandis que les oscillations semblent « reculer » en se propageant dans l'autre sens, à la manière d'un danseur pratiquant le « moonwalk ».

Ces résultats laissent entrevoir de nombreuses applications allant de l'imagerie ultrasonore haute résolution à l'isolation sonore et à la furtivité en acoustique sous-marine. De plus, cette voie de synthèse par les techniques de physico-chimie de la matière molle permet la fabrication de matériaux fluides ou souples de formes adaptables, et ce sur des échelles potentiellement industrialisables.

 

DOCUMENT         CNRS           LIEN

 
 
 
initiation musicale toulon  

LA TURBULENCE ET LE CHAMP MAGNÉTIQUE TERRESTRE

 

Paris, 13 novembre 2014


La turbulence, un ingrédient amplificateur du champ magnétique terrestre
La turbulence, ensemble de mouvements aléatoires qui animent le métal en fusion du noyau terrestre, contribuerait au champ magnétique de notre planète, comme viennent de le démontrer des chercheurs de l'Institut des sciences de la Terre (CNRS/Université Joseph Fourier Grenoble 1/IRD/Université de Savoie/IFSTTAR). Pour parvenir à ce résultat, ils ont modélisé le noyau externe de la Terre par du sodium liquide confiné entre deux sphères de métal concentriques et en rotation – un dispositif baptisé Derviche Tourneur Sodium1 (DTS). Leurs résultats viennent d'être publiés dans la revue Physical Review Letters.
Comme de nombreuses planètes et la plupart des étoiles, la Terre produit son propre champ magnétique par effet dynamo, c'est-à-dire grâce aux mouvements d'un fluide conducteur d'électricité – en l'occurrence, un mélange de fer et de nickel fondus. Cet océan de métal liquide, le noyau externe, entoure une graine de métal solide (ou noyau interne). Il est mis en mouvement par la convection que provoque le refroidissement du noyau. L'écoulement qui en résulte est particulièrement complexe ; aux déplacements du fluide sur de grandes distances, bien compris et générateurs du champ magnétique, viennent s'ajouter des mouvements désordonnés, aléatoires, sur de courtes distances, les fluctuations turbulentes. Si la turbulence existe aussi dans l'atmosphère et dans l'océan, celle du noyau terrestre se distingue, car elle est sous la double influence de la rotation terrestre et d'un fort champ magnétique. Cette turbulence particulière, ni les expériences en laboratoire, ni les simulations informatiques2 ne sont aujourd'hui capables de la reproduire. Jusqu'à maintenant il était donc impossible pour les géophysiciens de déterminer son rôle vis-à-vis du champ magnétique.

Afin de mieux comprendre les interactions entre turbulence et champ magnétique, des chercheurs de l'Institut des sciences de la Terre, à Grenoble, ont utilisé l'expérience « Derviche Tourneur Sodium », démarrée en 2005. Dans ce modèle de noyau terrestre miniature, 40 litres de sodium liquide (un fluide conducteur d'électricité) sont contenus dans l'espace séparant deux sphères concentriques. L'originalité de ce modèle réside dans le fait qu'un aimant au centre de la sphère interne fournit un fort champ magnétique et que la rotation de cette graine entraine très efficacement le liquide conducteur. Dans ces conditions, le sodium liquide est soumis à un champ magnétique élevé et à une forte rotation, comme on l'attend dans le noyau terrestre, et animé à la fois de mouvements de grande échelle et de fluctuations aléatoires.

Des capteurs répartis sur la sphère externe et à l'intérieur du sodium ont permis de cartographier le champ magnétique, tandis que des faisceaux d'ultrasons mesuraient, par effet Doppler, la vitesse d'écoulement du fluide. Grâce à ces données, les chercheurs ont démontré que les mouvements turbulents augmentent la capacité du fluide à conduire l'électricité, et donc amplifient le champ magnétique, loin de l'atténuer comme avaient suggéré de précédentes expériences. Ce phénomène, observé pour la première fois en laboratoire, a été confirmé par des simulations numériques.

Ces résultats s'appliquent aussi aux planètes qui ont un champ magnétique et aux étoiles. La découverte de ce nouvel ingrédient du champ magnétique permettra peut-être d'expliquer pourquoi dans le cas de Vénus, planète « jumelle » de la Terre, le noyau métallique liquide ne produit pas de champ magnétique. Plus près de nous, mieux connaître ces fluctuations turbulentes pourrait aider à comprendre les inversions du champ magnétique.

 

DOCUMENT          CNRS            LIEN

 
 
 
initiation musicale toulon  

NEUTRINOS ...

 

Paris, 25 septembre 2014


Inauguration du deuxième détecteur de neutrinos de l'expérience Double Chooz


Un second détecteur de neutrinos vient d'être édifié par le CNRS et le CEA à proximité de la centrale nucléaire de Chooz (Ardennes). Ses mesures complèteront celles du premier détecteur, installé depuis cinq ans, afin d'étudier, dans le cadre de l'expérience Double Chooz, les caractéristiques des neutrinos, ces particules élémentaires presque insaisissables produites en abondance notamment dans le Soleil et dans les réacteurs nucléaires. Construit à 400 mètres du cœur des réacteurs de la centrale, ce second détecteur est inauguré le 25 septembre 2014 en présence de représentants du CNRS et du CEA, et des autorités locales, qui soutiennent activement cette implantation.
Après sa mise en service au cours de l'automne, le détecteur captera les neutrinos produits dans les cœurs des deux réacteurs de la centrale, situés à 400 mètres. Ces données seront comparées à celles collectées par l'autre détecteur, installé à 1 kilomètre de ces réacteurs. La différence de composition attendue est due à une métamorphose des neutrinos, qui changent de caractéristiques au cours de leur trajet. L'expérience Double Chooz est fondamentale pour permettre de comprendre ce phénomène, et ainsi compléter le Modèle standard de la physique des particules1.

Étudier les « saveurs » des neutrinos grâce aux centrales nucléaires

Les neutrinos, particules un million de fois plus légères que les électrons, sont un sous-produit connu des réactions nucléaires « beta ». Ils sont ainsi produits dans des réacteurs nucléaires en fonctionnement, mais aussi dans la croûte et le manteau terrestre, le corps humain, ou encore les étoiles, le Soleil étant la source de neutrinos la plus abondante sur Terre. Ils peuvent naître sous trois formes ou « saveurs », comme disent les physiciens. Mais ils ont cette propriété étonnante, appelée « oscillation », de changer de « saveur » en se déplaçant, en fonction de leur énergie et de la distance parcourue. Ces « oscillations » dépendent de trois paramètres (nommés « angles de mélange »), dont deux sont connus avec une bonne précision. Le troisième est bien plus petit et difficile à mesurer précisément, et c'est sur cette mesure que portent les efforts de l'expérience Double Chooz.

L'expérience Double Chooz

Le projet Double Chooz est né en 2003 d'une collaboration internationale2, à l'initiative de chercheurs du CEA et du CNRS. En 2009, un premier détecteur a été installé dans un laboratoire souterrain, construit par EDF dans les années 1990 à 1 kilomètre des cœurs des réacteurs de la centrale. Ce dispositif a permis, en 2011, de détecter la transformation des neutrinos durant leur vol, découverte confirmée dès 2012 par les autres expériences internationales. Depuis lors, une course mondiale à la précision s'est engagée pour mesurer le troisième angle de mélange des neutrinos. A Chooz, la mise en service d'un second détecteur va permettre d'y participer efficacement. D'ici trois ans, le paramètre manquant devrait y être mesuré avec une précision de 10 %.

A l'image du premier détecteur, ce second instrument est constitué d'une cuve cylindrique de dix mille litres remplie d'un mélange d'huiles minérales. Un tel volume est nécessaire car les neutrinos interagissent très faiblement avec la matière : ils traversent murs, montagnes, et êtres vivants, pratiquement sans interaction. Afin d'en détecter un, il faut donc « interposer » au parcours des neutrinos une grande quantité de matière. Chaque jour, cet instrument ne détectera que 300 neutrinos environ, sur les centaines de milliards de milliards qui le traverseront. Par ailleurs, le détecteur est enfoui sous 50 mètres de roches et protégé par plusieurs enceintes concentriques pour l'isoler du rayonnement cosmique et de la radioactivité naturelle ambiante.

La comparaison des résultats de Double Chooz avec ceux d'autres expériences similaires en Chine (Daya-Bay) et en Corée (RENO) et d'accélérateurs de particules (T2K au Japon) facilitera la conception de projets pour explorer l'origine de l'asymétrie entre matière et antimatière observée dans l'Univers. En effet, selon la théorie du Modèle standard, qui prédit le comportement de la matière depuis le début de l'Univers, le Big Bang aurait créé a priori autant de matière que d'antimatière, il y a 13,7 milliards d'années. Mais la matière est observée en surabondance aujourd'hui. Les neutrinos pourraient bien détenir la clé de cette énigme.

Le laboratoire abritant ce deuxième détecteur a été financé par le FEDER (Fonds européen de développement régional), la région Champagne-Ardenne, le département des Ardennes, la communauté de communes Rives de Meuse, EDF, le CNRS et le CEA.


DOCUMENT            CNRS             LIEN

 
 
 
initiation musicale toulon  

ÉRUPTION VOLCANIQUE

 

Paris, 5 janvier 2014


Les conditions d'éruption d'un supervolcan recréées dans un laboratoire de rayons X


Des scientifiques ont reproduit les conditions de pression et de température régnant dans la chambre magmatique des supervolcans pour comprendre comment se déclenchent leurs explosions. Ces explosions, heureusement très rares, sont les catastrophes naturelles les plus dramatiques sur Terre, à l'exception des chutes de météorites géantes. Grâce aux rayons X du synchrotron européen (ESRF), les scientifiques ont établi que les éruptions des supervolcans peuvent se produire spontanément, par simple augmentation de la pression magmatique, sans besoin de cause externe. Ces travaux impliquent en France le Laboratoire de géologie de Lyon : Terre, planètes et environnement (CNRS / Université Lyon 1 / ENS Lyon) et l'ESRF (Synchrotron Européen) à Grenoble ainsi que l'université Polytechnique (ETH) de Zurich, l'Institut Paul Scherrer à Villingen (Suisse) et l'université Okayama (Japon). Ils sont publiés dans Nature Geoscience le 5 janvier 2014.
C'est une éruption de supervolcan, il y a 600 000 ans dans le Wyoming aux Etats-Unis, qui a créé le cratère gigantesque, appelé caldeira, au centre duquel se trouve aujourd'hui le Parc National de Yellowstone. Quand le volcan a explosé, il a éjecté plus de 1000 km3 de cendres et de lave dans l'atmosphère, 100 fois plus que l'éruption du Mt Pinatubo aux Philippines en 1992. Les grosses éruptions volcaniques ont un impact majeur sur le climat de la planète. L'éruption du Mt Pinatubo a fait décroître la température du globe de 0,4 degrés pendant plusieurs mois. Pour un supervolcan, la chute de température pourrait être de 10 degrés pendant 10 ans.

Selon un rapport de la Société géologique de Londres, en 2005, « même la science-fiction ne peut imaginer un mécanisme crédible qui permettrait d'éviter l'éruption d'un supervolcan. Nous devons cependant essayer de comprendre les mécanismes impliqués dans les super-éruptions et prédire la catastrophe suffisamment à l'avance pour que la société en soit avertie. La préparation est le seul moyen de limiter les effets désastreux d'une super-éruption. »

Les mécanismes qui provoquent les éruptions de supervolcans sont restés obscurs jusqu'à maintenant. Ils sont bien différents des phénomènes éruptifs observés dans les volcans conventionnels tels que le Mt Pinatubo. Un supervolcan possède une chambre magmatique beaucoup plus grande et il est toujours situé dans une zone où le flux thermique en provenance du centre de la Terre est très élevé. De ce fait, la chambre magmatique est beaucoup plus grande et chaude, mais aussi déformable : sa forme change en fonction de la pression au fur et à mesure qu'elle se remplit de magma chaud. Cette plasticité permet à la pression de se dissiper plus efficacement que dans un volcan normal, dont la chambre magmatique est plus rigide. C'est pour cette raison que les supervolcans n'explosent pas souvent.
D'où la question : qu'est-ce qui peut alors provoquer l'éruption d'un supervolcan ? Wim Malfait de l'ETH Zurich explique: « L'élément déclenchant est une pression additionnelle causée par les différences de densité entre la roche solide et le magma liquide. On pourrait comparer cela à un ballon de foot rempli d'air que l'on plonge dans l'eau et qui remonte à la surface car l'eau est plus dense tout autour. » Cette pression additionnelle est-elle suffisante pour causer des fissures de la croûte terrestre, suivie d'une éruption violente, ou faut-il une source d'énergie externe comme un tremblement de terre ? Tel était le sujet de cette recherche.

Comme il est impossible de percer un trou dans la chambre magmatique d'un supervolcan pour l'étudier directement, les scientifiques ont reproduit en laboratoire les conditions extrêmes de pression et de température au niveau du magma. «Les rayons X de l'ESRF peuvent être ensuite utilisés pour connaître l'état (liquide ou solide) de la matière et les changements de densité lorsque le magma cristallise sous forme de roche », dit Mohamed Mezouar, chercheur à l'ESRF et membre de l'équipe. Jean-Philippe Perrillat, chercheur au Laboratoire de géologie de Lyon : Terre, planètes et environnement (CNRS / Université Lyon 1 / ENS Lyon), ajoute : « Des températures de plus de 1700 degrés et des pressions jusqu'à 36 000 atmosphères peuvent être atteintes à l'intérieur d'une presse appelée Paris-Edimbourg, où de minuscules échantillons de roche sont placés entre les deux pointes d'une enclume en carbure de tungstène puis chauffés avec un four résistif. Cet appareillage a été utilisé pour déterminer très exactement la densité du magma liquide sur une large gamme de pressions et de températures. » Le magma contient souvent de l'eau qui, sous forme de vapeur, ajoute de la pression. Les scientifiques ont également établi les densités de magma en fonction du contenu en eau.

Les résultats de ces expériences ont montré que la pression résultant des différences de densité entre la roche solide et le magma liquide est suffisante pour fissurer la croûte terrestre sur une distance de 10 km de la chambre magmatique. Carmen Sanchez-Valle de l'ETH Zurich conclut : «  Notre recherche a montré que la pression est suffisante pour que la croûte terrestre se fissure et le magma pénètre dans la croûte, même en l'absence d'eau ou de bulles de dioxyde de carbone. En montant vers la surface, une expansion violente du magma connue pour être à l'origine des explosions volcaniques, peut se mettre en place.»


DOCUMENT            CNRS              LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante
 
 
 
Google