|
|
|
|
 |
|
VIE ET MORT DES NEURONES ... |
|
|
|
|
|
Vie et mort des neurones dans le cerveau vieillissant
mensuel 322
daté juillet-août 1999 -
Deux idées fausses sont répandues. Tout d'abord, notre cerveau perdrait un nombre important de neurones au cours du vieillissement normal. Ensuite, cela expliquerait les troubles de la mémoire qui apparaissent avec l'âge. Or une mort cellulaire étendue ne survient que dans les démences neurodégénératives, comme la maladie d'Alzheimer. Dans le vieillissement normal, il s'agit plutôt alors d'un changement des propriétés des neurones.
Certainesmaladies neurodégénératives maladies d'Alzheimer ou de Parkinson, par exemple sont souvent associées au vieillissement. Il s'agit pourtant de phénomènes bien distincts, comme nous allons le voir. La mort cellulaire est le propre des pathologies neurodégénératives : certains circuits nerveux majeurs sont interrompus par la mort de neurones et la perte de synapses*, en général de manière sélective. Ainsi, la maladie de Parkinson est-elle caractérisée par la dégénérescence quasi totale d'une structure appelée " substance noire ". Quant à la maladie d'Alzheimer, le tableau clinique est hétérogène. En ce qui concerne le cortex, on distingue des zones primaires, qui traitent l'information sur un mode unique visuel, auditif, moteur... et des zones associatives, qui comme leur nom l'indique, traitent l'information de manière intégrée, plus complexe, et sont impliquées dans les fonctions dites supérieures comme le langage, la reconnaissance des visages, etc. Les premières ne souffrent que de pertes minimales, mais les dégâts sont importants dans les secondes. Le circuit le plus vulnérable est la connexion entre deux structures essentielles à la mémoire : le cortex entorhinal* et l'hippocampe*. Elle est appelée « voie perforante ».
Anatomie. Le cortex entorhinal CE est une région d'extraordinaire convergence, réunissant des informations en provenance de tout le cortex associatif, une sorte d'entonnoir dans lequel passent des données déjà traitées ailleurs dans le cerveau, avant d'aller rejoindre l'hippocampe. Ce dernier, quant à lui, joue un rôle primordial dans les processus de mémorisation. Les deux struc-tures cérébrales sont contiguës. Et si l'ensemble occupe dans l'espace une forme compliquée, le trajet de l'information est linéaire, en première approximation : du cortex entorhinal, l'information pénètre dans l'hippocampe via la voie perforante, jusqu'à une zone appelée gyrus denté. De là, elle repart vers une autre zone de l'hippocampe, CA3 CA pour corne d'Ammon puis vers une troisième, appelée CA1 fig. 2.
Les neurones de la voie perforante forment un ensemble particulier. Ils se situent pour la plupart dans la deuxième des six couches du cortex. Chez les sujets souffrant de la maladie d'Alzheimer, même très légèrement, on observe une perte assez étendue de neurones dans cette couche du cortex entorhinal, pouvant atteindre 50 %. Cette perte est parfois directement observable par imagerie IRM*, par exemple. Dans les cas sévères de la maladie d'Alzheimer, 90 % de ces neurones disparaissent. La destruction de la voie perforante peut alors mener à une interruption globale des connexions entre les zones associatives du cortex et de l'hippocampe, ce qui pourrait expliquer au moins une partie des troubles mnésiques liés à la maladie. Cette mort neuronale est sélective. D'autres parties de l'hippocampe, tels le gyrus denté ou de la région CA3, sont très résistantes à la dégénérescence chez le malade1.
Deux signes neuropathologiques s'ajoutent à la dégénérescence dans la maladie d'Alzheimer. On observe tout d'abord dans les tissus atteints la présence de plaques séniles : des structures sphériques microscopiques formées d'un coeur de protéines insolubles, et entourées de prolongements nerveux anormaux. Elles sont composées, en partie, de la protéine b-amyloïde. Les dégénérescences neurofibrillaires DNF constituent le deuxième signe. Celles-ci se situent à l'intérieur des cellules. Ce sont également des accumulations de protéines anormales, cette fois en rubans ou en faisceaux. Plaques séniles et dégénérescences neurofibrillaires sont considérées comme le reflet de la progression de la maladie et signalent une perturbation des circuits cérébraux. Elles conditionnent le diagnostic de la maladie. Cependant, leur seule présence ne suffit pas à expliquer la démence observée chez les patients puisqu'elles existent également chez des individus âgés sains. Dans le vieillissement normal, le nombre de DNF est extrêmement faible. Si la vaste majorité des humains après 55 ans ont certes quelques DNF, ou des neurones « en transition » vers une DNF dans la deuxième couche du cortex entorhinal fig. 1, ces individus sont a priori asymptomatiques, et ne souffrent d'aucune perte de mémoire manifeste. Cette observation contraste avec les analyses post mortem de patients atteints de la maladie d'Alzheimer : les DNF sont répandues dans tout le cortex associatif fig. 3.
Une relation trouble. Finalement, la relation entre la présence des DNF et la maladie reste assez obscure. Il n'existe ainsi aucun argument reliant la formation de DNF qui survient dans le vieillissement normal avec une dégénérescence ultérieure plus grave, comme la maladie d'Alzheimer. De plus, il est improbable que le déclin de la mémoire dans le vieillissement normal résulte de la présence minime de DNF dans le cortex entorhinal. Enfin, il faut remarquer que la démence dans la maladie d'Alzheimer va bien au-delà de la perte de mémoire. Sa sévérité est plutôt corrélée avec le nombre de DNF du cortex en général qu'avec ceux du cortex entorhinal ou l'hippocampe2.
Mais que se passe-t-il alors dans le vieillissement cérébral normal ?
Mort neuronale. L'idée d'une mort neuronale conséquence inévitable du vieillissement s'est répandue à partir des années 1950. Quelques articles démontrèrent une mort de neurones en l'absence de maladie neurodégénérative, chez l'être humain âgé, aussi bien que chez des primates non humains ou des rongeurs. Ces études présentaient des résultats disparates, mais leur ensemble suggérait que la plupart des aires du cortex et certaines parties de l'hippocampe perdaient de 25 % à 50 % de leurs neurones avec l'âge. A la fin des années 1980, la littérature fut analysé rigoureusement par Paul Coleman et Dorothy Flood de l'université de Rochester3. Leur conclusion confirma qu'il existe une perte importante de neurones avec l'âge. Cependant, dans certains cas, de l'avis même des auteurs, les données pouvaient être mises en doute à cause de différences entre espèces ou souches, traitement des tissus, ou méthode expérimentale. Dans toutes ces études passées, les chercheurs mesuraient la densité des neurones dans une structure donnée, et non pas leur nombre. Ces mesures de densité pouvaient être biaisées par des changements de la taille des neurones ou des structures étudiées, que ce soit à cause de la préparation du tissu pour l'observation, ou à cause du processus de vieillissement lui-même. Le développement de méthodes plus rigoureuses pour compter le nombre et non plus la densité des neurones, en particulier les techniques dites stéréologiques a infirmé cet ancien point de vue fig. 4. Ces nouvelles techniques reposent à la fois sur l'observation en volume de coupes plus épaisses et sur des techniques d'imagerie et de comptage informatique. Leur application à différentes espèces, y compris les humains, a mené à la conclusion que la chute du nombre de neurones n'est pas significative dans le vieillissement normal, au moins en ce qui concerne les deux structures cérébrales qui nous intéressent ici : le cortex entorhinal et l'hippocampe.
Etude fonctionnelle. Les travaux les plus intéressants pour le vieillissement sont ceux qui ont étudié une région cérébrale donnée, en association avec certaines fonctions. En particulier, P.R.. Rapp et M. Gallagher, à l'époque à l'université de Stony Brook à New York, ont analysé les données stéréologiques de l'hippocampe de rats âgés, et étudié simultanément leur comportement4. Ils ont montré que la mort neuronale n'est probablement pas la cause du déclin fonctionnel. Dans leur étude, ils n'observent pas de diminution du nombre de neurones dans les différents champs de l'hippocampe, chez le rat âgé en comparaison avec le rat jeune. Des résultats similaires ont été obtenus grâce à des modèles de vieillissement cognitif avec des primates non humains.
Chez les personnes âgées non démentes, il n'y a aucune perte neuronale dans le cortex entorhinal ou dans la partie CA1 de l'hippocampe, les deux régions les plus impliquées dans la fonction mnésique.
Il existe pourtant des baisses fonctionnelles claires, liées à des circuits identifiés. Un certain nombre de tâches comportementales spécifiques de la fonction hippocampique ont révélé un défaut mnésique associé avec l'âge à la fois chez les rongeurs et les singes. Il existe également des données très fortes en faveur de troubles similaires chez l'homme. Comment les expliquer alors ?
Au niveau psychologique déjà, il semblerait que les troubles mnésiques liés à l'âge chez l'être humain diffèrent de ceux observés dans les formes précoces de la maladie d'Alzheimer. Tandis que les malades ne peuvent retenir que très peu de nouvelles informations, les personnes agées saines peuvent le faire, même si cela leur est plus difficile et prend plus de temps que dans leur jeunesse.
Changements qualitatifs. Il existe en fait dans le vieillissement normal des changements neuroanatomiques autres que la mort cellulaire : des modifications de la quantité et de la qualité des connexions entre les neurones. Diverses hypothèses ont été envisagées. A. Peters et ses collègues de la faculté de médecine de Boston ont décrit des singes âgés sans perte neuronale dans le cortex préfrontal, mais avec des troubles cognitifs démontrables, ce qu'ils ont attribué à une rupture de l'enveloppe de myéline qui entoure les neurones, et favorise la transmission des informations. Les connexions de et vers le cortex préfrontal seraient intactes, mais atteintes fonctionnellement5. Quant à Y. Geinisman, de la faculté de médecine de Chicago, il a montré chez le rat une perte du nombre de synapses dans la zone terminale de la voie perforante, ce qui pourrait affecter la fonction de ce circuit, mais cela ne semble pas survenir chez le singe6. Par ailleurs, la forme des dendrites*, et la morphologie des synapses pourraient être transformées, à la fois chez le rongeur et l'homme7. Ces changements pourraient avoir un impact sur les circuits hippocampaux.
A un niveau encore plus fin, celui de la transmission synaptique, de nombreux aspects ne sont pas affectés, ou bien les troubles sont compensés, au cours du vieillissement dans l'hippocampe du rat, ainsi que le prouvent les études électrophysiologiques, comme celles de Carol Barnes au département de psychologie de l'université de l'Arizona8. Ce type d'étude permet de mesurer l'activité synaptique des réseaux des neurones. Une composante de la transmission synaptique apparaît cependant invariablement compromise dans le vieillissement, c'est la plasticité des synapses.
Qu'est-ce donc ? On considère en général aujourd'hui que l'expérience individuelle s'inscrit dans le cerveau au travers de modifications des connexions entre les neurones. Certaines deviennent plus importantes, d'autres moins, en fonction de l'activité, ininterrompue, du cerveau. La plasticité synaptique recoupe plusieurs types d'événements. Le plus étudié d'entre eux s'appelle potentialisation à long terme PLT ou LTP en anglais. C'est l'augmentation réversible de l'efficacité d'une connexion dans des conditions particulières.
Elle a été comparée par certains auteurs au conditionnement pavlovien, à un niveau cellulaire : si une cellule est active en même temps qu'une autre, leur connexion est « renforcée » voir l'encadré. La plupart des neurobiologistes admettent ainsi que de telles transformations permettent de stocker des souvenirs dans le cerveau, bien que ce ne soit pas absolument démontré. C'est dans l'hippocampe que la PLT a été mise en évidence pour la première fois. Or, la capacité à obtenir une PLT diminue avec l'âge. Ce cerait là le substrat biologique du vieillissement cognitif. Ces changements sont dépendants de certains récepteurs, appelés NMDA, acteurs essentiels de la PLT. Ces récepteurs sont des protéines, plus faciles à mesurer que ce phénomène assez fin qu'est la plasticité. C'est pourquoi ils sont utilisés comme marqueurs pour l'étudier. Nous avons montré récemment, chez le singe, que le nombre de ces récepteurs diminuait spécifiquement dans la voie perforante9 fig. 6.
Mémoire spatiale. A ce propos, les résultats les plus fascinants concernent une forme de mémoire spatiale chez le rat. Il existe chez cet animal, comme chez les primates d'ailleurs, des « cellules de localisation ». Ce sont des neurones de l'hippocampe qui enregistrent un environnement familier. Ils s'activent quand l'animal est dans un endroit particulier qu'il reconnaît. Plusieurs neurones de localisation associés peuvent former ensemble une sorte de carte, qui permettrait à l'animal de se repérer dans un endroit qu'il aurait déjà fréquenté fig. 5. Ce type de cartes est généralement interprété comme un substrat de la mémoire spatiale. La formation des cartes, c'est-à-dire le stockage de nouvelles informations dans les neurones de localisation, est un exemple typique de plasticité synaptique. De manière intéressante, les cellules de localisation fonctionnent normalement chez le rat âgé, tant que celui-ci reste dans son environnement familier. Mais s'il change d'environnement, le rat âgé est alors dans l'incapacité de recréer ou de retrouver une nouvelle carte. Le parallèle est frappant avec la désorientation spatiale que l'on observe chez de nombreuses personnes âgées, et qu'elles ressentent en « étant perdu ». Les auteurs de l'étude, Carol Barnes et ses collègues, supposent que le déficit est lié à la défaillance, due à l'âge, des mécanismes de la PLT10. Il s'agirait là donc d'un substrat cellulaire au vieillissement mnésique.
Les événements neurodégénératifs sous-tendant la maladie d'Alzheimer semblent donc bien distincts de ceux impliquant la perte de mémoire liée à l'âge. Il semble qu'il existe cependant un point commun très marquant aux deux phénomènes : le rôle des oestrogènes des hormones sexuelles. Bruce McEwen et ses collègues de l'université Rockefeller ont démontré que les oestrogènes induisent une augmentation de la densité des synapses dans les cellules de CA1, ce qui peut être associé à une PLT. Récemment, nous avons montré que lorsqu'on ôte à des rats femelles leurs ovaires producteurs d'oestrogènes, les quantités de récepteurs NMDA diminuent. Cela pourrait suggèrer une diminution corrélée de la PLT11.
D'un autre côté, des expérience cliniques récentes chez la femme ont démontré que les oestrogènes ont un effet protecteur sur le déclenchement de la maladie d'Alzheimer. In vitro , les oestrogènes peuvent protéger des neurones en culture contre une toxicité induite par l'amyloïde présente dans les DNF. Aussi, bien qu'il n'y ait pas de données directe indiquant si les oestrogènes empêchent ou non la mort neuronale, ces données suggèrent qu'ils protègent contre la neurodégénérescence.
Ménopause et neurones. Il semblerait donc que les oestrogènes soient un participant essentiel dans les processus qui mènent à une incapacité mnésique et cognitive, qu'ils soient neurodégénératifs ou non. Ce rôle est d'une importance évidente pour les femmes ménopausées. Les liens entre oestrogènes, récepteurs NMDA, circuits hippocampiques et mémoire représentent une zone particulièrement active de recherches en gérontologie, qui attire un nombre croissant d'équipes de recherches.
La sénescence reproductive ménopause pourrait ainsi avoir un impact aux multiples facettes sur la perte de mémoire et le déclin cognitif, au travers d'une baisse de la régulation de circuits hippocampiques intacts, comme au travers d'une baisse de la protection contre la neurodégéneration. Peut-être n'est-il pas surprenant que les oestrogènes, des molécules si cruciales pour l'espèce, au travers de la régulation du système reproductif féminin, jouent également un rôle dans la régulation de multiples processus neuronaux qui confèrent une valeur de survivance. L'importance de telles influences neuroendocrines sur le vieillissement pour les mâles reste à éclaircir.
1 T. Gómez-Isla et al., J. Neurosci., 16 , 4491, 1996.
2 L.M. Bierer et al., Arch. Neurol., 52, 81, 1995.
3 P.D. Coleman et D.G. Flood, Neurobiol. Aging, 8 , 521, 1987.
4 P.R. Rapp et M. Gallagher, Proc. Natl. Acad. Sci. USA, 93 , 9926, 1997.
5 A. Peters, J. Comp. Neurol., 371 , 153, 1996.
6 Y. Geinisman et al., Prog. Neurobiol., 45 , 223, 1995.
7 F.L.F. Chang et al., Neurobiol. Aging, 12 , 517, 1991.
8 C.A. Barnes, Trends Neurosci., 17 , 13, 1994.
9 A.H. Gazzaley et al., Proc. Natl. Acad. Sci. USA, 93 , 3121, 1996.
10 C.A. Barnes et al., Nature, 388 , 272, 1997.
11 A.H. Gazzaley et al., J. Neurosci., 16 , 6830, 1996.
NOTES
*UNE SYNAPSE correspond à l'interface entre un neurone et une autre cellule neurone, cellule musculaire.... C'est par elle qu'est transmise l'information.
*L'HIPPOCAMPE est une circonvolution de la face interne de cortex temporal. Il est notamment impliqué dans les mécanismes de mémorisation et dans les crises d'épilepsie.
*Dans le lobe temporal interne, LE CORTEX ENTORHINAL est situé entre l'hippocampe et la scissure rhinale. C'est une zone de convergence pour des informations venues d'autres parties du cortex, qui sont ensuite envoyées vers l'hippocampe.
*L'IRM ou imagerie par résonance magnétique est une des techniques les plus fines d'imagerie cérébrale in vivo .
*Prolongements du corps cellulaire, LES DENDRITES forment l'antenne réceptrice d'un neurone.
SQUELETTE CELLULAIRE ET ALZHEIMER
Le constituant majeur des dégénérescences neurofibrillaires DNF de la maladie d'Alzheimer est une protéine, appelée protéine tau. Normalement, c'est à dire de façon non pathologique, elle s'associe aux microtubules qui forment le squelette des cellules. Par ailleurs, les DNF surviennent principalement dans les neurones qui contiennent de grandes quantités de neurofilaments, un autre composant du cytosquelette fig. 1. Des altérations de ce dernier seraient-elles un attribut commun aux processus dégénératifs?
De nombreuses maladies neurodégénératives possèdent une caractéristique commune, la présence dans les cellules de sortes de petites lésions, appelés corps d'inclusion, constitués, au moins en partie, de protéines de neurofilaments. Par exemple, les corps de Lewy dans les neurones de la substance noire permettent un diagnostic de la maladie de Parkinson. Dans le cortex cérébral, ils sont associés à certaines formes de démence. Les corps de Pick dans le cortex cérébral sont la lésion neuropathologique qui permet de définir la maladie du même nom, et les cellules atteintes dans la sclérose latérale amyotrophique montrent des inclusions dans les muscles moteurs.
Des expériences semblent montrer un lien entre squelette cellulaire et maladie neurodégénrative. Ainsi, des souris transgéniques qui surexpriment certaines proteines normales des neurofilaments montrent des troubles des neurones moteurs similaires à la sclérose amyotropique. De plus, les souris transgéniques qui expriment une protéines humaine de neurofilament montrent des profils pathologiques multiples, ressemblant aux dégénérescences neurofibrillaires, ou aux corps de Pick...
L'implication des protéines des neurofilaments n'exclue pas un rôle tout aussi important du stress oxydatif, ou même d'autres mécanismes. En fait, ces derniers pouraient même augmenter la rupture de l'assemblage ou du transport des neurofilaments. Reste à savoir pourquoi ces protéines deviennent pathogènes.
LA POTENTIALISATION À LONG TERME
Le réseau des neurones du cerveau est en perpétuel changement. Parmi les divers phénomènes impliqués, la potentialisation à long terme PLT est sans doute le plus étudié. Découvert pour la première fois en 1966, dans l'hippocampe, c'est aujourd'hui encore dans cette structure que de nombreuses études s'attachent à en élucider les mécanismes.
Le principe général est le suivant. Un ensemble B de fibres nerveuses active un ou plusieurs autres neurones A dont on enregistre la réponse. Tant que la stimulation reste constante, la réponse l'est aussi. Cependant, si on intercale une série de stimulations à très haute fréquence appelé tetanus, la réponse augmente alors, et cela même après la reprise du rythme initial.
Dans le modèle classique, les fibres A libèrent une molécule excitatrice, le glutamate. Celui-ci se fixe sur des récepteurs à la surface de la cellule B et provoque la réponse que l'on enregistre. Le glutamate exerce son action par au moins deux catégories de récepteurs. Les premiers s'appellent AMPA, les seconds NMDA, du nom de composés qui servent à les identifier. Les premiers véhiculent la réponse. Les seconds forment des " détecteurs de coïncidence ". Ils ne s'activent que lorsque deux conditions sont remplies: quand les fibres A sont activées, et quand le neurone B l'est aussi ce qui est le cas lors d'un tetanus. C'est en quelque sorte un transistor biolo- gique. L'activation du récepteur NMDA déclenche toute une cascade de réactions biochimiques qui aboutissent in fine à l'augmentation prolon- gée de la réponse: la PLT.
Bien que l'on ait découvert de nombreux autres mécanismes qui puissent agir comme détecteur de coïncidence, le récepteur NMDA en reste l'archétype. A ce titre, sa présence est extrêmement surveillée dans les études sur la plasticité. Ainsi, des expériences de manipulation génétique des récepteurs NMDA ont mené à des troubles de la PLT et de l'apprentissage en l'absence de changements dégénératifs. Par ailleurs, une présence moindre des récepteurs NMDA, dans l'hippocampe, a été associée au vieillissement chez le singe.
DOCUMENT larecherche.fr LIEN |
|
|
|
|
 |
|
LES GÈNES HOMÉOTIQUES ET L'ÉVOLUTION DES ANIMAUX |
|
|
|
|
|
LES GÈNES HOMÉOTIQUES ET L'ÉVOLUTION DES ANIMAUX
L'idée que les modifications que subissent les espèces au cours de l'évolution sont causées par des altérations du développement de l'embryon est apparue dès le XIXe siècle. Néanmoins, l'ignorance dans laquelle nous étions des mécanismes fondamentaux de l'embryogenèse, c'est-à-dire le développement progressif d'un animal juvénile composé de milliers de cellules, de tissus différenciés et d'organes complexes à partir d'une seule cellule, l'oeuf fécondé, a empêché jusqu'à une date récente toute avancée significative dans le domaine des mécanismes embryologiques de l'évolution. Cette situation a radicalement changé depuis une trentaine d'années. Des progrès considérables ont été faits dans la compréhension de la façon dont les gènes contrôlent le développement de l'embryon. Pour la première fois, des exemples convaincants du rôle possible de certains gènes dans l'évolution de la morphologie des animaux ont été proposés. Au cours de mon exposé, je souhaite donner un aperçu historique de la relation entre embryologie et évolution. J'essaierai d'expliquer à quel point la découverte des gènes homéotiques et de leur conservation chez la plupart des animaux a été révolutionnaire pour la biologie du développement. Dans une troisième partie, j'expliquerai comment certains de ces gènes peuvent avoir été impliqué dans l'évolution du plan d'organisation des animaux.
Texte de la 432e conférence de l'Université de tous les savoirs donnée le 11 juillet 2002
Guillaume Balavoine, « Le complexe Hox et l'évolution des animaux »
L'idée que les modifications que subissent les espèces au cours de l'évolution sont causées par des altérations du développement de l'embryon est apparue dès le XIXe siècle. Néanmoins, l'ignorance dans laquelle nous étions des mécanismes fondamentaux de l'embryogenèse, c'est-à-dire le développement progressif d'un animal juvénile composé de milliers de cellules, de tissus différenciés et d'organes complexes à partir d'une seule cellule, l'oeuf fécondé, a empêché jusqu'à une date récente toute avancée significative dans le domaine des mécanismes embryologiques de l'évolution. Cette situation a radicalement changé depuis une trentaine d'années. Des progrès considérables ont été faits dans la compréhension de la façon dont les gènes contrôlent le développement de l'embryon. Pour la première fois, des exemples convaincants du rôle possible de certains gènes dans l'évolution de la morphologie des animaux ont été proposés.
Au cours de mon exposé, je souhaite donner un aperçu historique de la relation entre embryologie et évolution. J'essaierai d'expliquer à quel point la découverte des gènes homéotiques et de leur conservation chez la plupart des animaux a été révolutionnaire pour la biologie du développement. Dans une troisième partie, j'expliquerai comment certains de ces gènes peuvent avoir été impliqué dans l'évolution du plan d'organisation des animaux.
Evolution, embryologie et génétique
La première synthèse de l'embryologie et de l'évolution est celle de Ernst Haeckel (1834-1919), le grand naturaliste allemand. Depuis longtemps, les naturalistes avaient constaté que des animaux très dissemblables au stade adulte comme les mammifères et les poissons peuvent avoir des embryons très comparables aux stades précoces (le fameux stade « pharyngula »). Des interprétations pré-évolutionnistes ont éte proposées par Serres et par Meckel, mais la synthèse la plus connue était celle de von Baer (1792-1876). Les lois de von Baer mettent en exergue que l'embryogenèse dans un groupe donné fait d'abord apparaître les caractères les plus généraux, puis les caractères spécifiques, suivant une séquence temporelle stricte. Von Baer, qui était "fixiste" (il ne croyait pas à l'évolution des formes vivantes) voyait donc les différents groupes d'animaux comme autant de lignées séparées, ayant en commun les caractères généraux apparaissant tout au début de l'embryogenèse, et se différenciant par des caractères apparaissant plus tardivement dans le développement.
Haeckel voyait au contraire dans l'ontogénie une image exacte de la façon dont les animaux ont évolué, une conception énoncée en français par le fameux aphorisme : « l'ontogenèse récapitule la phylogenèse ». Selon Haeckel, les caractères nouveaux acquis par les organismes adultes au cours de l'évolution sont originellement des additions terminales au processus de leur développement. Par la suite, d'autres caractères peuvent encore être ajoutés en séquence, mais les caractères acquis auparavant sont retenus dans l'embryogenèse en apparaissant plus tôt. L'embryogenèse récapitule donc les formes adultes des espèces ancestrales. Un exemple bien connu est celui des fentes pharyngiennes qui apparaissent transitoirement chez les embryons des mammifères et qui selon l'hypothèse d'Haeckel sont le vestige des fentes portant les branchies chez les ancêtres « poissons » des mammifères. Haeckel reconnaît des exceptions à cette règle pourtant, c'est-à-dire des caractères qui n'apparaissent pas dans l'ontogénie à un stade qui correspond à celui de leur acquisition au cours de la phylogenèse. Mais le grand oeuvre du biologiste évolutionniste doit justement consister à retrouver dans l'embryogenèse les indices véritables de l'histoire des êtres. En appliquant systématiquement ces principes à la reconstitution de cette histoire des êtres vivants, Ernst Haeckel fut le premier à dessiner les arbres généalogiques (ou « phylogénétique ») représentant leurs parentés.
Gradualisme darwinien contre mutationnisme
Haeckel était un partisan enthousiaste des idées de Charles Darwin (1809-1882). Darwin proposa en 1859 dans l'Origine des espèces une théorie révolutionnaire de l'évolution des formes vivantes par la sélection naturelle. Le fondement de cette théorie est qu'il existe à tout moment dans la population naturelle de n'importe quelle espèce des variations infimes de la forme et de la taille des organes. Ces variations apparemment insignifiantes ont néanmoins la caractéristique d'être héréditaires. Certaines de ces variations se révèlent désavantageuses pour la survie dans son milieu de l'individu qui les porte mais d'autres sont bénéfiques. Comme la reproduction produit bien plus d'individus qu'il n'en peut survivre (la fameuse "lutte pour la vie"), les individus porteurs d'une variation bénéfique sont plus susceptibles d'attendre l'age de la reproduction que les autres et vont plus que les autres transmettrent ces avantages à leur descendance, entraînant l'expansion de la variation au sein de la population de l'espèce. Comme pendant ce temps, de nouvelles variations apparaissent, de proche en proche, par l'accumulation sur de très longues périodes de temps (Darwin parlait de millions d'années) d'infimes variations, des modifications très substantielles de l'anatomie de l'espèce peuvent se produire. Darwin ne connaissait pas l'origine des variations héréditaires qu'il constatait dans les populations naturelles et il ne savait pas par quel mécanisme ces variations étaient transmises à la descendance.
On le voit, le développement ne joue pas un grand rôle dans la théorie de Darwin. Haeckel a donc essayé de concilier le darwinisme avec sa propre théorie d'évolution des formes vivantes par modification du développement. Haeckel avait ses propres idées sur la transmission héréditaire des variations, fondée sur ce qu'il est convenu d'appeler l'hérédité des caractères acquis, mais cette théorie s'effondra avec la découverte du gène.
Ironiquement, les gènes étaient découverts par un moine morave, Gregor Mendel (1822-1884), à l'époque même où Darwin faisait publier l'Origine des espèces. Mendel travaillait sur une plante, le petit pois, et sur de petites variations de pigmentation ou de texture des téguments des graines de cette plante. Ces variations étaient semblables à celles dont parlait Darwin dans l'Origine des espèces. Mais pendant plus de trente ans, les travaux de Mendel n'ont reçu aucun écho.
L'une des premières conséquences de la redécouverte du gène vers la fin du dix-neuvième siècle a été un rejet par les premiers généticiens de l'évolution « darwinienne » (c'est-à-dire du rôle prépondérant de la sélection naturelle dans l'apparition des caractères nouveaux) comme cause principale de l'évolution anatomique. L'un des ré-inventeurs de la génétique, le hollandais Hugo de Vries (1848-1935), distinguait deux sortes de variations dans les populations naturelles : les variations continues minimes sur lesquelles Darwin fondait sa théorie, mais qui ne pouvaient, selon de Vries, en aucun cas permettre l'évolution et les variations discontinues et brutales (qu'il appela des « mutations ») qui, seules, pouvaient produire de nouvelles espèces. Le rôle de la sélection était, sinon rejetée, du moins limitée à l'émondage des espèces par trop inadaptées. Pour de Vries, l'évolution procède donc par sauts, une mutation pouvant faire apparaître soudainement une nouvelle espèce.
Bateson et les transformations homéotiques
Parmi les tenants de cette école saltationniste, on trouve William Bateson (1861-1926), zoologiste anglais. Bateson était persuadé que les mécanismes évolutifs qui produisent de nouvelles espèces sont discontinus et interviennent par des variations anatomiques brutales. Dans Materials for the study of variation (1894), il fournit un recueil considérable d'exemples de ces variations discontinues. Certaines de ces variations se caractérisent par le fait qu'une certaine partie du corps d'un organisme prenait l'apparence d'une autre partie. Par exemple, chez les insectes, les antennes peuvent être remplacée par des pattes ; chez les crustacés, les yeux peuvent devenir des antennes ; chez diverses plantes, les pétales de la fleur peuvent prendre la forme d'étamines. Bateson fournit une longue liste de ce type de transformations parmi des groupes aussi variés que les vers annelés, les insectes et les mammifères. Il inventa le terme « homéose » pour désigner ces transformations. Bateson s'intéressa à l'origine de la variation et s'enthousiasma pour la théorie génétique de l'hérédité. Cette théorie lui semblait tout à fait confirmer ses idées quant à l'apparition soudaine de nouvelles espèces. Néanmoins, pendant les décennies qui suivent, ces idées ne font guère école. Les généticiens s'intéressent essentiellement à des modifications assez minimes de la morphologie pour expliquer l'évolution des caractères. Les « monstres » issus de mutations telles que les transformations homéotiques intervenant au cours du développement précoce les intéressent fort peu.
Les mutants homéotiques de la drosophile
Il faudra attendre Edward Lewis (né en 1918, prix Nobel 1995 de médecine), un généticien américain, pour que l'origine génétique des transformations homéotiques soient analysées en profondeur. Edward Lewis a travaillé toute sa vie sur les gènes homéotiques de la mouche fétiche des généticiens, la drosophile.
Le corps d'une mouche (tête, thorax et abdomen) est formé de segments d'anatomies différentes mais qui apparaissent identiques au début de leur développement. Sous l'effet d'une mutation d'un gène homéotique, un ou plusieurs segments vont au cours du développement prendre l'apparence d'autres segments. L'exemple le mieux connu est celui de la mutation bithorax. Les mouches porteuses de cette mutation ont deux paires d'ailes et semblent avoir deux thorax. Chez les mouches (diptères), le deuxième segment thoracique (T2) est très développé et porte une paire de pattes et une paire d'ailes alors que le troisième segment thoracique (T3) est de taille réduite et porte juste une paire de pattes mais pas d'ailes. Chez le mutant bithorax, T3 ressemble trait pour trait à T2, c'est-à-dire que la taille du segment est considérablement augmentée et qu'il porte des ailes (fig 1).
Edward Lewis a consacré une bonne partie de sa carrière à l'étude de ces gènes et dans une publication en 1978, il a contribué à démontrer deux aspects fondamentaux de leur structure et de leur fonction (fig 2) :
- les gènes homéotiques sont regroupés en deux complexes sur un chromosome de la mouche, le complexe Antennapedia qui compte cinq gènes contrôlant la forme des segments de la tête et du thorax, et le complexe Bithorax avec trois gènes s'occupant du thorax et de l'abdomen. Lewis en a déduit que les gènes homéotiques étaient des gènes apparentés apparus par des duplications successives dites « en tandem » d'un seul gène ancestral.
- Ces gènes régulent l'identité des segments de la mouche le long de l'axe antéro-postérieur suivant un ordre identique à celui dans lequel on les trouve sur le chromosome. C'est ce que l'on appelle la propriété de colinéarité.
Edward Lewis pensait à cette époque que les gènes homéotiques étaient une particularité des arthropodes (les animaux articulés) et qu'ils avaient joué un grand rôle dans leur évolution. On considérait à l'époque que les insectes avaient évolué à partir d'ancêtres chez lesquels tous les segments du tronc sont identiques, comme chez les milles-pattes actuels. Cette anatomie aurait été contrôlée par un gène homéotique ancestral unique. Puis d'autres gènes, ceux du complexe Bithorax seraient apparus par des duplications du gène ancestral. Mais ces nouveaux gènes auraient acquis une nouvelle fonction, celle de gènes « suppresseurs » de « pattes » L'apparition de ces gènes aurait donc provoqué l'apparition de l'abdomen sans patte et donc des insectes (fig 3).
Les années qui suivirent, qui virent l'application systématique des nouvelles techniques de biologie moléculaire à l'analyse des gènes des deux complexes donnèrent souvent raison aux idées visionnaires de Lewis sauf sur un point important : les gènes étaient beaucoup plus anciens qu'il ne le pensait.
L'homéodomaine ou la pierre de Rosette de la biologie du développement.
Dans les années 1980, plusieurs laboratoires ont élucidé la nature et la fonction moléculaire des gènes homéotiques. Les gènes sont des fragments d'ADN sur le chromosome composé d'un enchaînement spécifique de nucléotides (les quatre fameuses bases A,T,G,C). Ces enchaînements codent la structure d'une protéine, laquelle peut avoir diverses fonctions (protéines contractiles comme dans les cellules musculaires, enzymes du métabolisme, etc ...). Quand un gène, à un moment donné du développement et dans des cellules données, est effectivement « traduit » dans la protéine qu'il code, on dit que le gène s'« exprime ». Les gènes homéotiques codent pour des protéines régulatrices de l'expression d'autres gènes, c'est-à-dire que dans les cellules où le gène homéotique s'exprime, une protéine homéotique est produite qui va à son tour réguler positivement ou négativement l'expression de plusieurs autres gènes.
Les gènes homéotiques sont responsables de l'identité des segments de la drosophile au cours du développement, c'est-à-dire qu'ils vont aiguiller le développement des cellules de ces segments vers une direction spécifique. C'est pourquoi ces gènes ont été désignés sous l'appellation de gènes « sélecteurs» : ils fixent la destinée des cellules embryonnaires dans lesquelles ils sont exprimés, c'est-à-dire dans lesquelles la protéine qu'ils codent est produite. On peut grâce à des méthodes moléculaires sophistiquées mettre en évidence l'expression du gène dans des segments spécifiques (fig 4).
Le séquençage des gènes homéotiques fut effectué dans plusieurs laboratoires, notamment celui de Walter Gehring en Suisse et celui de Thomas Kaufman aux Etats-Unis. Comme Lewis l'avait prévu, les gènes homéotiques sont bien des gènes apparentés. Ils ont tous en commun un motif conservé, lequel code pour une partie de la protéine que l'on a appelé l'« homéodomaine ». C'est grâce à cet homéodomaine que les protéines homéotiques peuvent se fixer sur le chromosome à des endroits spécifiques et réguler d'autres gènes se trouvant à proximité, les gènes « effecteurs » qui vont réaliser la « forme » finale du segment en agissant sur la différenciation des cellules de ce segment.
Les études menées sur la drosophile ont donc révélé des concepts entièrement nouveaux pour la biologie du développement. Les gènes homéotiques ont été les premiers gènes « sélecteurs » étudiés en détail mais on sait aujourd'hui que beaucoup d'autres gènes de ce type (des centaines) existent sur les chromosomes et qu'ils régulent de multiples aspects du développement.
Très rapidement, on s'aperçut que des gènes codant pour des protéines à homéodomaine très proches des gènes homéotiques de la drosophile étaient présents chez la plupart des animaux, en particulier chez les vertébrés. On appelle ces gènes les gènes « Hox » de façon générale. La voie était ouverte pour une vaste entreprise d'identification de gènes par homologie qui conduisit à la découverte des complexes de gènes Hox chez l'homme et la souris. La « Pierre de Rosette » de la biologie du développement était découverte.
Des complexes homologues chez les insectes et les vertébrés.
Les deux complexes homéotiques de la drosophile ANT-C et BX-C sont le résultat d'une scission d'un complexe ancestral unique. Cette organisation ancestrale en un seul complexe a été trouvée chez d'autres insectes. Les vertébrés ont quatre complexes de gènes Hox qui résultent manifestement de duplications d'un complexe ancestral entier. Les quatre complexes sont situés sur des chromosomes différents. Ils sont alignables entre eux, chaque gène ayant en général un proche parent chez chacun des trois autres complexes, dont l'homéodomaine est quasiment identique.
La plupart des gènes Hox des vertébrés sont alignables avec les gènes des complexes de la drosophile, sur la base de la comparaison des homéodomaines et de la position du gène au sein du complexe (figure 3). Ceci démontre que ces gènes ont été hérités d'un ancêtre commun aux deux organismes, un animal qui vivait il y a au moins 550 millions d'années. Le complexe Hox lui-même devait donc exister chez cet animal. Il a été possible d'étudier la fonction des gènes Hox chez les mammifères en prenant comme modèle la souris où il est possible d'obtenir artificiellement des mutants de ces gènes. Quand on détruit l'un des gènes de la souris, on obtient des souriceaux présentant des malformations qui sont des transformations homéotiques de la colonne vertébrale ou des côtes, c'est-à-dire que certaines vertèbres ou certaines côtes prennent l'aspect de vertèbres ou de côtes plus antérieures ou plus postérieures. On a donc des effets très comparables à ceux observés sur les segments de la drosophile.
On avait donc à l'époque entre les mains un premier exemple de conservation à très grande échelle d'une structure chromosomique complexe. Que cette structure soit constituée de gènes fondamentaux pour le développement, responsables d'une partie importante du plan d'organisation de l'animal, comme cela a été établi rapidement chez les vertébrés aussi, était complètement inattendu. Rien ne laissait penser en effet que les plans d'organisation d'un mammifère et d'un insecte avaient quoi que ce soit de comparable, hormis quelques grands traits de base (axe antéro-postérieur, présence d'une tête, etc...).
La comparaison structurelle et fonctionnelle des gènes Hox des insectes et des mammifères établissait donc de façon certaine que leur dernier ancêtre commun avait déjà un complexe Hox élaboré, que ce complexe jouait déjà un rôle dans la régionalisation antéro-postérieure de l'embryon.
L'évolution du complexe Hox au sein des animaux.
La ressemblance des complexes de la souris et de la drosophile est remarquable. Il y a néanmoins des différences importantes. D'abord, les quatre complexes semblables des mammifères suggèrent que chez un de leur ancêtre, le complexe ancestral a été dupliqué plusieurs fois pour donner les quatre copies. Ensuite, les mammifères ont beaucoup plus de gènes « postérieurs » (exprimés dans la partie postérieure de l'embryon) que les insectes (jusqu'à cinq contre un seul). Ces différences suggèrent que des changements assez importants se sont produits pendant l'histoire du complexe Hox.
Ces constatations ont amené certains chercheurs à se demander quelles ont été les grandes étapes de l'évolution du complexe, à quelle moment de l'histoire de la vie ce complexe est apparu et si cette apparition est corrélée avec une étape importante de l'évolution des formes vivantes. Une « chasse » au gène Hox a donc été menée chez toute une série d'organismes. Très vite, il est apparu que l'histoire des gènes Hox serait propre aux animaux. En effet, aucun gène proche du type Hox n'a été découvert chez les plantes, chez les champignons ou chez les bactéries.
Pour comprendre l'histoire du complexe Hox au sein des animaux, il faut avoir une idée assez précise de la généalogie des animaux. A l'époque où les gènes Hox furent identifiés, dans les années 1980, d'importants progrès restaient à faire dans ce domaine. Depuis Haeckel, les hypothèses sur la forme de l'arbre généalogique des animaux, basées sur la comparaison de leurs caractères anatomiques et embryologiques avaient abondées. Mais des conflits importants subsistaient entre les évolutionnistes. L'ère de la biologie moléculaire apporta un renouveau considérable à ce domaine car il devint possible d'utiliser les gènes pour établir les relations de parenté entre les êtres vivants. La comparaison de la structure de gènes homologues (c'est-à-dire hérité d'un ancêtre commun) entre plusieurs organismes permet d'obtenir ces informations. Tous les gènes sont constitués d'un enchaînement précis des quatre acides nucléiques constitutifs de l'ADN (A, T, G et C). Lorsqu'une espèce donne naissance à deux lignées distinctes au cours de l'évolution, de petites différences vont commencer à s'accumuler entre les gènes initialement identiques de ces deux lignées. En général, ces différences consistent en de simples remplacements, appelés substitutions, d'un acide nucléique par un autre. En première approximation, ces substitutions s'accumulent régulièrement en fonction du temps écoulé. Le principe de base de ce que l'on appelle la « phylogénie moléculaire » est donc simple : plus les structures des gènes comparés sont proches (moins on trouve de substitutions), plus les organismes concernés doivent être apparentés.
L'utilisation systématique de ces techniques sur plusieurs types de gènes a permis de voir émerger au cours des années 1990 la forme générale de l'arbre des animaux (fig 5). A la base de l'arbre émergent les éponges, les animaux les plus simples. Les éponges n'ont pas à proprement parler de tissus différenciés. Tous les autres animaux se regroupent par le fait qu'ils ont des tissus et des organes différenciés. A la base de ce nouveau groupe des « animaux à tissus », on distingue une autre branche qui est celle des polypes (anémones de mer, coraux) et méduses. Ces animaux ont été reconnus très tôt comme relativement plus simples que les autres animaux à tissus, car ils n'ont fondamentalement que deux feuillets cellulaires (un externe et un interne), n'ont pas de système nerveux condensé et pas non plus d'axe antéro-postérieur avec une tête et un tronc clairement différenciés. Tous les autres animaux semblent être regroupés dans un troisième ensemble que l'on appelle les « bilatériens ». Ce terme se réfère au fait que ces animaux ont une symétrie bilatérale (c'est-à-dire un côté gauche et un côté droit identique) mais ils ont en commun de nombreuses autres particularités. Ils ont un axe antéro-postérieur très différencié avec une tête et un tronc, un tube digestif et un système nerveux condensé avec un « cerveau » et une chaine nerveuse. Les recherches les plus récentes ont montré que ces animaux complexes, les bilatériens se divisent eux-mêmes en trois grands groupes illustrés sur la figure 5 mais ceci dépasse notre propos.
La recherche de gènes Hox chez les éponges a toujours été négative. Chez les polypes et méduses, un petit nombre de gènes apparentés aux gènes Hox a été identifié et quelques indices qu'ils sont groupés en complexe ont pu être obtenus. Chez pratiquement tous les groupes de bilatériens considérés (vertébrés, oursins, insectes, vers annelés, mollusques, etc ...), un complexe Hox élaboré comptant entre huit et quatorze gènes a été découvert. On voit donc se dessiner un scénario assez clair de l'histoire du complexe Hox. Les premiers gènes Hox seraient apparus chez un ancêtre des animaux à tissus après la divergence des éponges. A l'époque où la branche des polypes et méduses s'est séparée, le complexe Hox n'auraient compté que quelques gènes (peut-être trois). Par contre de nombreuses duplications de gènes se seraient produites chez les ancêtres des bilatériens. On peut imaginer que les grandes étapes de ce scénario correspondent à des étapes de la complexification au plan d'organisation des animaux. En gros, l'acquisition d'un axe de symétrie très simple comme celui des polypes et méduses serait corrélé à la présence d'un petit complexe de trois gènes. Par contre, l'apparition d'une régionalisation antéro-postérieure poussée comme chez les bilatériens aurait nécessité la présence d'un complexe beaucoup plus élaboré d'au moins huit ou dix gènes.
On le voit, l'existence du complexe Hox est bien plus ancienne que ce que Lewis avait imaginé. La multiplication du nombre des gènes que Lewis envisageait chez les arthropodes s'est en fait produite bien avant, chez les ancêtres des bilatériens. Pourtant, les bilateriens ont évolué pour donner une diversité époustouflante d'animaux. Est-ce à dire que le complexe Hox n'a pas été impliqué dans cette diversification, jouant simplement un rôle conservateur d'agent de régionalisation de l'axe antéro-postérieur ?
Les gènes Hox sont-ils responsables de l'évolution anatomique ?
Deux exemples concrets chez les arthropodes
Nous avons vu que l'évolution de la structure du complexe s'est faite bien avant ce que pensait initialement Edward Lewis au cours de l'histoire des animaux. Pourtant, dans la suite de cet exposé, nous allons retourner vers le groupe de prédilection de Lewis et de nombreux évolutionnistes depuis, c'est-à-dire les arthropodes. Les arthropodes, comme nous l'avons vu sont tous constitués de segments, initialement identiques au cours du développement mais qui se différencient par la suite sous l'action des gènes Hox. En comparant l'organisation anatomique des principaux groupes d'arthropodes, on s'aperçoit que leurs plans anatomiques diffèrent considérablement non seulement par la forme des segments mais aussi par la façon dont ils se regroupent le long du corps de l'animal (fig 6). Chez les myriapodes, le groupe le plus simplement organisé, tous les segments portent des pattes et ont à peu près la même forme d'un bout à l'autre. Dans les autres groupes, ils se regroupent en un thorax et un abdomen mais de façon très différentes. Chez les arachnides (araignées et autres scorpions), le thorax portant les pattes est fusionné avec la tête, alors que les segments de l'abdomen ne portent pas de pattes. Chez les crustacés, tous les segments portent généralement des pattes mais celles du thorax sont souvent très différentes de celles de l'abdomen. Chez les insectes, le thorax ne comporte que trois segments et là encore les segments abdominaux ne portent pas de pattes. Les gènes Hox sont ils responsables de ces différences ? Des chercheurs de plusieurs laboratoires ont entrepris des études à la fois sur la structure et le fonctionnement du complexe Hox chez ces grands groupes d'arthropodes. Les résultats ont été surprenants. Globalement, la structure du complexe Hox est très remarquablement conservatrice chez tous les arthropodes. On retrouve les mêmes gènes que ceux que nous avons décrits chez la drosophile chez chacune des espèces d'arthropodes considérés. Contrairement à ce que proposait Lewis, ce n'est donc pas une variation dans le nombre des gènes Hox qui explique l'évolution de l'anatomie des arthropodes. Qu'en est-il de la façon dont ces gènes s'expriment ? Nous avons que les gènes Hox, gènes sélecteurs, influent sur la destinée des cellules dans lesquels ils sont exprimés sous la forme d'une protéine. De la même façon que chez la drosophile, les divers gènes Hox des arthropodes considérés s'expriment dans des groupes de segments contigus, généralement de façon chevauchante et en respectant la règle de colinéarité. La correspondance globale des domaines d'expression suggère des correspondances entre l'anatomie segmentée des différents groupes. Ainsi, si on en croit les gènes Hox (mais aussi l'anatomie comparée plus traditionnelle), les segments du thorax d'une araignée correspondent à ceux de la tête chez les autres arthropodes. Tout ce passe comme si au cours de l'évolution soit les arachnides ont commencé à marcher sur leur tête, soit au contraire (et peut-être plus vraisemblablement) les autres groupes ont intégré à leur tête la partie la plus antérieure de leur tronc dont les pattes sont devenus des pièces buccales destinées à la mastication. Néanmoins, en comparant les gènes correspondant dans différents groupes d'arthropodes, on observe des différences parfois considérables. Le gène pb, par exemple s'exprime dans la plus grande partie du céphalothorax des arachnides (c'est-à-dire cinq segments consécutifs) alors qu'il n'est exprimé que dans un seul segment de la tête chez une espèce de crustacé. L'extension postérieure de l'expression des gènes les plus antérieurs est également variable. Est-il possible que de telles différences expliquent les différents plans d'organisation des arthropodes ? Ceci semble peu probable car il est difficile de relier ces différences individuelles avec des particularités anatomiques constatées. Une difficulté supplémentaire est que nous ne disposons pas chez ces arthropodes des collections de mutants de la drosophile et donc pas de moyen de savoir quelles sont réellement les fonctions de ces gènes.
Pourtant, dans un certain nombre de cas, les chercheurs ont trouvé des indices plus probants.
Le premier exemple concerne les crustacés (crabes, crevettes, etc ...). Les chercheurs Michalis Averof et Nipam Patel (fig 7) ont comparé l'expression du gène Ubx chez diverses espèces de crustacés. Ces espèces diffèrent par la forme et la fonction des pattes les plus antérieures portées par le thorax. Chez certaines espèces, ces pattes sont effectivement des organes locomoteurs mais chez d'autres espèces, elles sont devenues des pièces buccales avec une fonction masticatrice. Chez les embryons des premières, le gène Ubx est exprimé dans toutes les pattes. Par contre, chez les embryons des secondes, les ébauches des pattes les plus antérieures, celles qui vont devenir des pièces buccales, n'ont pas d'expression du gène Ubx. Tout ce passe donc comme si le gène Ubx jouait un rôle dans le maintien de l'identité de patte locomotrice. Son « retrait » des pattes les plus antérieures était donc nécessaire pour leur permettre de devenir des pièces masticatrices. Pour autant, nous ne pouvons pas affirmer que c'est ce retrait de Ubx des pattes antérieures qui a causé la transformation au cours de l'évolution. Peut-être d'autres gènes sont-ils intervenus.
Un autre exemple concerne un aspect en apparence beaucoup plus discret de l'évolution morphologique mais là aussi le gène Ubx (encore lui ...) semble jouer un rôle certain. Cet exemple a été découvert par le chercheur David Stern, chez plusieurs espèces très apparentées de mouches drosophile. Les mouches ont de fins poils sur les pattes mais pas partout. Certaines zones de la patte en sont exemptes et David Stern a mis en évidence que les cellules de ces zones expriment le gène Ubx pendant leur développement. Certaines espèces de mouches ont une zone sans poils très étendue sur leurs pattes alors que chez d'autres, elle est beaucoup plus réduite. David Stern a montré que le gène Ubx est directement responsable de ces différences. Lorsqu'il introduit le gène d'une mouche"glabre « dans une mouche poilue » par un simple croisement (de la même façon que l'on croise un âne avec une jument pour obtenir un mulet), il obtient une extension de la zone sans poils.
Conclusion
Ces deux exemples nous ramènent à notre propos du début : l'évolution est-elle saltationniste ou gradualiste ? Le premier exemple, avec la transformation de plusieurs pattes de façon très importante semble suggérer la possibilité d'une évolution saltationniste. Pourtant rien dans cet exemple ne démontre que cette transformation s'est faite brutalement sous l'effet d'une ou d'un très petit nombre de mutations. Le deuxième exemple concernant un infime détail de l'anatomie d'une patte se rattache beaucoup plus au gradualisme darwinien. Le débat entre saltationnisme et gradualisme est aujourd'hui largement estompé. La plupart des biologistes acceptent l'idée que l'évolution se fait bien de façon graduelle par l'accumulation de petites différences comme le suggérait Darwin. Une partie de l'intérêt suscité par les gènes homéotiques provenait de l'idée que ces gènes étaient susceptibles d'engendrer une évolution par saut. Aujourd'hui, les chercheurs sont beaucoup plus prudents sur cette idée. Mais, ironie de l'histoire, c'est cet engouement pour les gènes homéotiques qui a permis de réaliser une percée décisive dans la compréhension des mécanismes génétiques du développement.
VIDEO canal U LIEN |
|
|
|
|
 |
|
Ginesislab : optimiser l'utilisation des données d'imagerie biomédicale |
|
|
|
|
|
Laboratoires communs
Ginesislab : optimiser l'utilisation des données d'imagerie biomédicale
Le Groupe d'imagerie neurofonctionnelle de l'Institut des maladies neurodégénératives1, et la société Fealinx, inaugureront Ginesislab le 23 octobre prochain. Ce laboratoire commun permettra, à travers l'analyse automatique des données d'imagerie de milliers d'individus, de fournir des biomarqueurs, et à terme de prédire des risques de pathologie.
Analyser les images biomédicales de milliers d'individus pour comprendre la variabilité de l'organisation du cerveau, et différencier le normal du pathologique, est l'un des axes de recherche du Groupe d'imagerie neurofonctionnelle de l'Institut des maladies neurodégénératives1. Pour gérer et exploiter au mieux cette grande base de données, le laboratoire a sélectionné le logiciel de PLM (Product Life Management) et s’est s'appuyé sur un spécialiste de l'intégration de ce type de système, la société Fealinx. Cette collaboration démarrée en 2013, sous la forme du projet ANR Biomist, a permis d'adapter au domaine médical une plateforme industrielle de gestion de données. Elle se poursuit avec la création d'un laboratoire commun, Ginesislab, qui bénéficie d'un soutien de l'ANR sur trois ans.
« Le laboratoire commun Ginesislab va développer des méthodologies permettant la création de biomarqueurs à partir des données brutes d'imagerie. Par ailleurs, l'objectif est aussi de mettre en place des interfaces utilisateur qui faciliteront l'accès des chercheurs à cette base de données », indique Marc Joliot, chercheur au laboratoire et co-directeur de Ginesislab. De son côté, la société Fealinx, qui assure la partie développement informatique de la plateforme, veut ainsi étoffer son offre en créant des outils de PLM pour le médical, avec en ligne de mire la montée en puissance de la médecine personnalisée.
Avec un logiciel de PLM, dont la vocation première est de gérer le cycle de vie d'un produit industriel, Ginesislab bénéficie de la traçabilité des informations que procure ce type d'outil. La base de données biomédicales sera en effet constituée de données d'imagerie, mais aussi démographiques, psychologiques, protéomiques, génétiques..., et permettra de conserver l'historique des modifications sur ces informations ainsi que les liens entre les différents types d'informations. L'ensemble sera partagé par tous les chercheurs dans une base centralisée unique pouvant être accessible dans le cadre d’études multicentriques.
La création de ce laboratoire commun entre partenaires de longue date va permettre de passer à la vitesse supérieure. Le projet est désormais piloté par une direction commune, et un ingénieur d'étude à plein temps a été embauché, pour travailler notamment sur le développement et l’intégration des chaines de traitements de données, intégration qui sera valorisée sur une plateforme maintenue par la société Fealinx. A plus long terme, la création d’une équipe mixte axée, au-delà de la neuroimagerie, sur la médecine personnalisée du futur, est envisagée.
1 CNRS/université de Bordeaux
Contacts :
Marc Joliot / Co-directeur de Ginesislab / marc.joliot@u-bordeaux.fr
Philippe Boutinaud / Co-directeur de Ginesislab / pboutinaud@fealinx.com
DOCUMENT cnrs LIEN |
|
|
|
|
 |
|
PROTÉOMIQUE |
|
|
|
|
|
Protéomique
Dossier réalisé avec la collaboration de Jérôme Garin, directeur de recherche au sein de la Direction des sciences du vivant du CEA, directeur de l’Institut de recherche en technologies et sciences pour le vivant (IRTSV), directeur de l’unité U1038 (Inserm/CEA/UJF) et coordonnateur de l’infrastructure nationale de protéomique (ProFI - Mars 2013.
La protéomique, c’est l’histoire de la chenille et du papillon. Ces deux organismes apparemment si différents ont exactement le même génome. Ce qui les distingue, ce sont les produits finaux d’expression de leurs gènes, c’est à dire leurs protéines. Cet exemple montre à quel point il est nécessaire, pour comprendre un organisme, de s’intéresser à ses protéines et pas seulement à son génome.
La protéomique consiste à étudier l’ensemble des protéines d’un organisme, d’un fluide biologique, d’un organe, d’une cellule ou même d’un compartiment cellulaire. Cet ensemble de protéines est nommé « protéome ».
Le protéome est une entité dynamique et complexe. Au sein de chaque cellule, le contenu de protéines se modifie en permanence en fonction des conditions intra ou extra cellulaires. De plus, par le biais de réarrangements qui modifient ses fonctions biologiques, un même gène peut donner naissance à plusieurs protéines. Le protéome contient donc un nombre beaucoup plus important de protéines que le génome ne contient de gènes.
L’étude du protéome révolutionne la connaissance du vivant
Les principaux objectifs de la protéomique sont d’identifier et de quantifier les protéines présentes dans un échantillon biologique à un instant T, et d’obtenir des données fonctionnelles : localisation, identification de protéines partenaires, sites de liaison de ligands... Ces données permettent de mieux comprendre les mécanismes moléculaires impliquées dans les grandes fonctions cellulaires. Il est par exemple possible d’étudier des voies de signalisation impliquées dans des processus biologiques ou dans l’apparition de maladies. En comparant les échantillons de personnes en bonne santé et de personnes malades (inclues dans de grandes cohortes), la protéomique permet également de découvrir et valider l’utilisation de biomarqueurs protéiques utiles au dépistage de maladies, au suivi de leur évolution ou encore à l’évaluation de l’efficacité d’un traitement. .
Human Protein Project (HPP)
Un vaste projet international de protéomique, sur le modèle de celui qui existe en génomique, a été lancé en 2011. Piloté par l’Human Proteome Organisation (HUPO), une organisation internationale, il consiste à créer une base de données unique permettant de décrire les protéines correspondant aux 20 300 gènes codants chez l’homme. Les différents pays partenaires de ce projet se sont répartis les chromosomes qu’ils annotent progressivement. La France est en charge du chromosome 14. D’autres volets de ce projet consistent à caractériser les protéomes du plasma, du foie, du cerveau, du système immunitaire, du rein, de l’urine ou encore du système cardiovasculaire. L’hétérogénéité des protéomes d’un individu à l’autre et leur caractère dynamique rendent cet exercice difficile, mais il présente l’avantage de promouvoir la protéomique et de stimuler les coopérations internationales.
La spectrométrie de masse au service de l’étude des protéines
Analyse sur un écran des résultats d'un spectromètre de masse (MALDI/TOF) des cellules tumorales humaines. Unité de recherche Inserm 896. Institut de recherche en cancérologie de Montpellier (IRCM)
L’étude des protéines a connu un essor spectaculaire au cours des années 90, avec l’avènement d’appareils - les spectromètres de masse - compatibles avec l’analyse de ces grosses molécules (ce qui valu le prix Nobel de chimie en 2002 à John Fenn et Koichi Tanaka). Jusque-là, les scientifiques utilisaient une méthode chimique qui nécessitait de purifier des quantités importantes de chaque protéine avant de pouvoir en déterminer la séquence en acides aminés. Aujourd’hui, les spectromètres de masse permettent d’analyser des échantillons biologiques complexes, pouvant contenir des milliers de protéines, dont certaines présentes en faible quantité.
La spectrométrie de masse consiste à identifier des molécules en fonction de la mesure précise de leur masse. Pour réaliser une étude protéomique, il faut d’abord digérer les protéines de l’échantillon à étudier grâce à une enzyme, afin d’obtenir des fragments protéiques (ou « peptides ») qui sont solubles dans la solution qui est injectée dans le spectromètre de masse. Ces peptides sont ensuite fragmentés par la machine. Les masses de chaque peptide et des fragments sont mesurées. Elles permettent d’identifier les peptides contenus dans l’échantillon, en comparant les données expérimentales aux données déjà existantes dans des banques.
Les données sont restituées sous une forme que l’on peut comparer à un puzzle. C’est aux scientifiques de reconstituer le puzzle pour retrouver l’identité des protéines qui étaient présentes dans l’échantillon. Ce travail est bien sûr facilité par des logiciels informatiques de plus en plus performants et des bases de données de plus en plus riches.
Collaborer pour progresser toujours plus vite
L’étude d’un protéome très complexe qui contient des milliers de protéines, comme celui du sang, du liquide séminal ou encore du liquide céphalo-rachidien, reste une aventure périlleuse qui nécessite l’expertise et la contribution de plusieurs laboratoires pendant plusieurs années. Trois sites français, localisés respectivement à Grenoble, Toulouse et Strasbourg, mettent actuellement leurs outils d’analyse et leurs données de protéomique en commun, grâce au financement des investissements d’avenir. L’objectif est de partager les expériences, de développer des logiciels et des protocoles communs pour harmoniser les données issues des différentes plateformes, puis d’élargir ce travail à d’autres sites en France et à l’étranger.
Image moléculaire du transit des spermatozoïdes dans l'épididyme de rat en imagerie par spectrométrie de masse MALDI
Grâce aux spectromètres de masse les plus récents, il devient possible d’étudier des protéines entières, sans avoir à les digérer préalablement. Cette pratique devrait connaître un essor important au cours des années à venir.
L’imagerie par spectrométrie de masse MALDI permet par ailleurs de faire du « profiling » du contenu protéique. L’appareil est par exemple capable de balayer une coupe d’échantillon et de restituer les masses mesurées sous forme de signaux de couleurs avec une très bonne résolution. Chaque protéome possède ainsi un profil sous forme de pics de couleurs.
En cancérologie, le fait de comparer le profil issu des cellules d’un patient présentant une tumeur avec celui de personnes saines peut par exemple aboutir à la mise au point d’un protocole permettant de détecter une tumeur maligne.
Ce dispositif est également de plus en plus utilisé en milieu hospitalier dans le domaine de l’infectiologie, pour caractériser des agents pathogènes en fonction de leur « profil MALDI ».
La protéomique pour comprendre, détecter et suivre les maladies
La protéomique permet d’étudier un échantillon biologique de façon globale, sans a priori sur les protéines susceptibles d’y être présentes. Cette approche permet d’obtenir une liste de protéines avec des données quantitatives. C’est ce qu’a fait l’équipe de Charles Pineau (Inserm U1085) pour identifier des marqueurs de la spermatogenèse. Les chercheurs ont effectué une analyse protéomique du liquide séminal et ont identifié 699 protéines parmi lesquelles au moins trois ont des niveaux d’expression associés à la fertilité ou, au contraire, l’infertilité.
De façon complémentaire, la protéomique permet également de réaliser des analyses ciblées qui visent à quantifier une protéine d’intérêt dans différents échantillons, afin d’étudier son rôle dans un système biologique. C’est par exemple ce qui est fait pour valider l’intérêt un biomarqueur dont le niveau d’expression est corrélé à un état physiologique normal ou pathologique, ou encore à la réponse à un traitement. Ce type d’approche permet aussi de suivre l’évolution d’un groupe de protéines pendant plusieurs semaines pour établir un profil d’expression en réponse à une perturbation. Cette stratégie a par exemple été utilisée pour étudier les effets du docetaxel, un traitement anti-cancéreux. Les analyses ciblées permettent enfin d’identifier des complexes de protéines. C’est ainsi que l’équipe du Pr Aleksander Edelman (Inserm U845) a pu mettre en évidence une protéine jouant un rôle clé dans la mucoviscidose : la kératine 8. Les chercheurs ont montré que, chez une majorité de patients, la kératine 8 se lie à la protéine responsable de la maladie (CFTR) et altère son fonctionnement.
La découverte de biomarqueurs, objectif majeur de la protéomique
Plaque Ciphergen pour la recherche de biomarqueurs. Plateforme de spectrométrie de masse et protéomique de l'unité 891 "Centre de Recherche en Cancérologie de Marseille", CRCM, Institut Paoli-Calmettes, Marseille
Même si les domaines d’application de la protéomique sont vastes, la découverte de biomarqueurs permettant de dépister des maladies, de suivre leur évolution ou l’efficacité d’un traitement est actuellement le principal moteur de développement de cette science. De tels biomarqueurs sont déjà connus, tel le PSA dans le cancer de la prostate, mais ils sont encore rares car ils doivent être sensibles, spécifiques et leur utilisation doit être validée sur de grandes cohortes de patients.
L’utilisation d’association de biomarqueurs paraît prometteuse pour détecter des pathologies multifactorielles. En 2010, les autorités de santé américaine ont par exemple approuvé un test fondé sur la détection de cinq biomarqueurs protéiques sanguins afin d’évaluer le volume de la tumeur maligne de l’ovaire avant chirurgie (OVA1). Le projet européen DECanBio, coordonné par le Dr Jérôme Garin (CEA/Inserm/UJF U1038), va également dans ce sens. Il consiste à découvrir et valider l’utilisation de biomarqueurs urinaires permettant de détecter de façon précoce des récidives du cancer de la vessie. Pour cela, les chercheurs étudient le protéome urinaire de personnes atteintes de ce cancer, identifient des biomarqueurs potentiels et confirment leur validité dans une large cohorte de patients issue de deux pays européens et atteints de pathologies pouvant être confondues avec le cancer de la vessie. L’objectif est de s’assurer de la spécificité des biomarqueurs découverts.
Ces biomarqueurs sont utiles en cancérologie mais également dans bien d’autres domaines thérapeutiques. Ainsi, l’équipe de Virginie Brun (CEA/Inserm/UJF U1038) a validé l’intérêt du dosage sérique de cinq biomarqueurs de l'infarctus du myocarde ainsi que celui du dosage sérique extrêmement sensible d'une toxine staphylococcique (entérotoxine A) responsable de plus de 70 % des intoxications alimentaires en France.
DOCUMENT inserm LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 ] Précédente - Suivante |
|
|
|
|
|
|